ENGINE CONTROL

1128-37/1311-26/1430-05/1430-07/1430-09/1430-14/ 1443-01/1443-03/1490-01/1535-30/1628-04/1740-03/ 1740-07/2010-01/2245-02

Engine Control

GENERAL INFORMATION		1628-04 PURGE CONTROL SOLENOID VALVE	64
1. ENGINE DATA LIST	3	1430-09 OXYGEN SENSOR 2010-01 ACCELERATOR PEDLA POSITION SENSOR	66
OVERVIEW AND OPERATING PTOCESS		1535-30 OIL PRESSURE SWITCH 1430-05 KNOCK SENSOR	71 73
1. MAJOR COMPONENTS 2. SYSTEM OPERATION 3. ECU CONTROL	4 6 9	REMOVAL AND INSTALLATION 1490-01 ENGINE ECU 2245-02 INJECTOR ASSEMBLY	75 86
CONFIGURATION AND FUNCTION 1490-01 G20DF ENGINE ECU		1443-01 IGNITION COIL ASSEMBLY 1443-03 SPARK PLUG 1430-14 CAMSHAFT POSITION SENSOR. 1128-37 CRANKSHAFT POSITION SENSOR	986 91 93 96 98 101 104 106 108 110 113 116 119 120
		1430-05 KNOCK SENSOR	122

ENGINE CONTROL

1490-00

GENERAL INFORMATION

1. ENGINE DATA LIST

Data	Unit	Value
Coolant temperature	°C	0.436V (130℃) ~4.896V (-40℃)
Intake air temperature	°C	$-40{\sim}130^{\circ}{\rm C}$ (varies according to ambient air temperature or engine mode)
Idle speed	rpm	700±50(P/N), 600±(D)
Engine load	%	18~25%
Mass air flow	kg/h	16~25kg/h
Throttle position angle	°TA	0° (Full Open) ~ 78° (Close)
Engine torque	Nm	varies according to engine conditions
Injection time	Ms	
Battery voltage	V	13.5V~14.1V
Accelerator pedal position 1	يجيتالا خودرو	0.3~4.8 ۷
Accelerator pedal position 2	بامانه دلاجیتال ت	0.3~2.4 V
Oxygen sensor	mV	0~5 V
OCV (Oil Control Valve)	%	0~100%
VIS solenoid valve	1=ON / 0=OFF	-
A/C compressor switch	1=ON / 0=OFF	-
Full load	1=ON / 0=OFF	-
Knocking control	1=ON / 0=OFF	-
Brake switch	1=ON / 0=OFF	-
Cruise control	1=ON / 0=OFF	-

OVERVIEW AND OPERATING PTOCESS

1. MAJOR COMPONENTS

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

Camshaft position

sensor

Coolant Temp

sensor

Front oxygen

sensor

0000-00

G20DF engine

ECU

Purge control solenoid valve

Crankshaft position sensor

15-5

ENGINE GENERA

ENGINE ASSEMBI

INTAKE SYSTEM

FUEL SYSTEM

> EXHAUST SYSTEM

IGNITION SYSTEM

LUBRCA ION

COOLING SYSTEN

> CHARGE SYSTEM

SE STAI

CRUIS CONTI

ENGINE ENGINE

_		
	Modification basis	
[Application basis	
Į.	Affected VIN	

VIS solenoid valve

2. SYSTEM OPERATION

1) Input/Output of ECU

Input		Control		Output
IG "ON" B+				
START signal				A/C Compressor control
Knock sensor 1				OCV control
T-MAP sensor				Injection volume control
Front oxygen sensor				
Rear oxygen sensor		E		Injection timing control
Coolant temperature sensor		E C U	-	Ignition timing control
Crankshaft position sensor	خودرو	يجيتال خر	کت د	VIS solenoid valve control
Accelerator pedal position sensor 1,2	جيتال	امانه دي	لينس	Purge control solenoid valve control
Throttle position sensor 1,2				Cooling fan control
Camshaft position sensor				Self diagnosis
A/C compressor ON/OFF				CAN
CAN				

ENGINE CONTROL

15-7

ENGINE GENERA

ENGINE SSEMBL

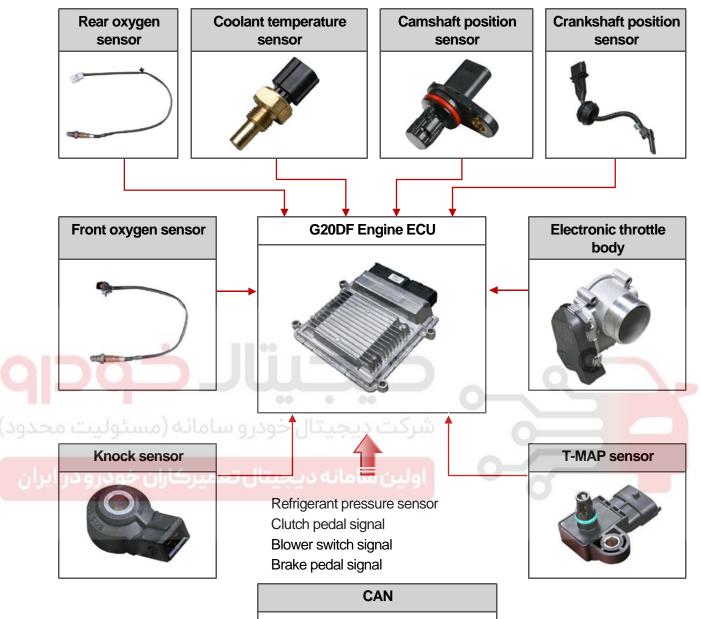
INTAKE SYSTEM

T FUEL A SYSTE

N EXHAU M SYSTE

CAT IGNIT

SYSTEM


CHARGE SYSTEM

STARTIN G

CRUISE CONTRO

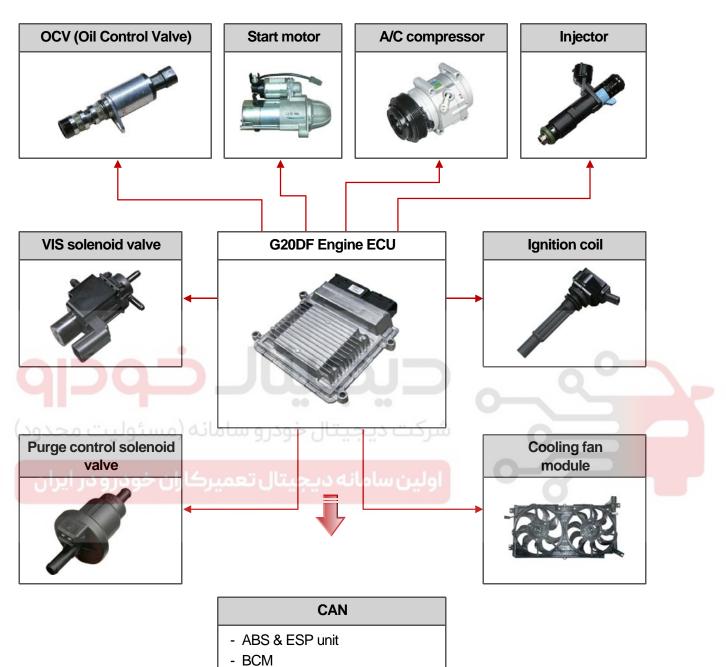
ENGINE

2) Components for ECU Input

Oil pressure switch

- Instrument cluster

- ABS & ESP


- TCU

3) Components for ECU Output

- Diagnostic tool

- EPS

- SKM - TCU

- E-coupling unit

- Instrument cluster

ENGINE CONTROL

15 - 9

3. ECU CONTROL

1) Functions

ECU receives and analyzes signals from various sensors and then modifies those signals into permissible voltage levels and analyzes to control respective actuators.

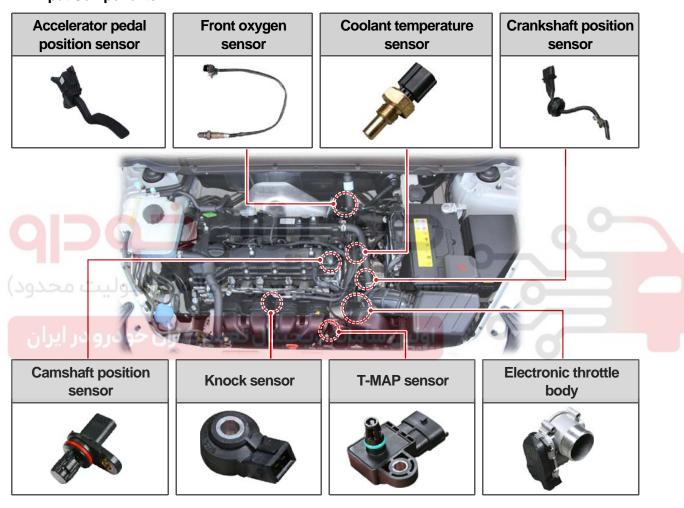
ECU microprocessor calculates injection period and injection timing proper for engine piston speed and crankshaft angle based on input data and stored specific map to control the engine power and emission gas.

Output signal of the ECU microprocessor activates the injector solenoid valve to control the fuel injection period and injection timing; so controls various actuators in response to engine changes.

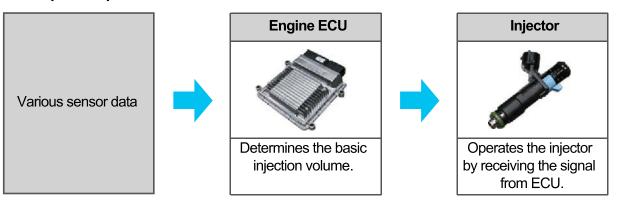
Auxiliary function of ECU has adopted to reduce emission gas, improve fuel economy and enhance safety, comforts and conveniences. For example, there are autocruise and immobilizer and adopted CAN communication to exchange data among electrical systems (automatic T/M and brake system) in the vehicle fluently. And the diagnostic tool can be used to diagnose vehicle status and defectives. Operating temperature range of ECU is normally -40 to +85°C and protected from factors like oil, water and electromagnetism and there should be no mechanical shocks.

2) Control Functions

- Controls by operating stages: To make optimum combustion under every operating stage, ECU should calculate proper injection volume in each stage by considering various factors.
- Starting injection volume control: During initial starting, injecting fuel volume will be calculated by function of temperature and engine cranking speed. Starting injection continues from when the ignition switch is turned to ignition position to till the engine reaches to allowable minimum speed.
- Driving mode control: If the vehicle runs normally, fuel injection volume will be calculated by accelerator pedal travel and engine rpm and the drive map will be used to match the drivers inputs with optimum engine power.


3) Injection Volume Control

(1) Overview


To keep the best engine conditions and to reduce the emission gas, ECU determines the injection volume and timing.

(2) Components

▶ Input Components

▶ Output Components

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

15-11

(3) Input/Output for Injection Volume Control

In	Control	
Throttle body	Compensates the injection volume according to throttle position	ECU
T-MAP sensor	Compensates the injection volume by metering the air mass flow	
Front oxygen sensor	Determines the injection volume	
Camshaft position sensor	Determines the injection timing	
Crankshaft position sensor	Engine rpm	شركت
Coolant temperature sensor	Compensates according to coolant temperature	اولین
Accelerator pedal position sensor	Driver's demand	
Knock sensor	Detects the engine vibration	

Output	
Precise fuel	njector

Modification basis
Application basis
Affected VIN

ENGINE

INTAKE SYSTEM

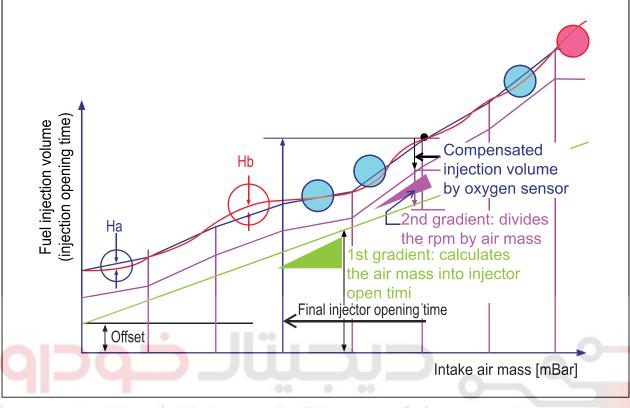
FUEL SYSTEM

EXHAUS SYSTEN

- IGNITION SYSTEN

LUBRCA ION

COOLIN


CHARGE

STARTIN

0000-00

(4) Basic Injection Volume Map

شرکت دیجیتال خودرو سامانه (مسئولیت محدود)

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

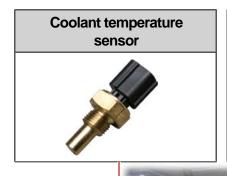
IGINE VERAL

IGINE SEMBL

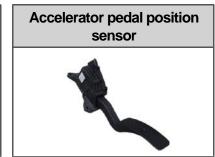
TAKE STEM

S) = N

SYSTEM SYSTEM


4) Ignition System Control

(1) Overview


G20DF engine is equipped with the single ignition system. Each spark plug is operated independently by the ECU and one ignition coil and spark plug are provided for each cylinder.

(2) Components

▶ Input Components

▶ Output Components

Knock sensor

Modification basis	
Application basis	
Affected VIN	

15-14 0000-00

(3) Input/Output for Ignition System

Input		Control		Output
Knock sensor	Retard signal when detecting the knocking	ECU		
Coolant temperature sensor	Advance signal according to coolant temperature			
Camshaft position sensor	#1 TDC signal			Independently controlled Ignition coil
Throttle position sensor	Fast warming up by checking idle position	الح ت دیجیت	ک	by ECU Ignition coil
Crankshaft position sensor	Detects the engine rpmand crankshaft position in each cylinder	ن سامانه		gl O
Acceleartor pedal position sensor	Driver's demand			

ENGINE CONTROL

(4) Features

korando

1. Determines the ignition timing according to input signal

The ECU always analyzes the following elements when determining the ignition timing.

- Crankshaft position sensor
- Camshaft position sensor
- Coolant temperature sensor
- Intake air temperature/air mass

2. Warm-up of catalytic converter

The ignition timing is retarded for about 20 seconds to operate the catalytic converter according to the operating temperature under the following conditions:

- The coolant temperature is 15°C ~ 40°C at starting.
- The idle speed is increased by the idle speed control to help warming up of the catalytic converter

3. Idle speed control

The ignition timing can be retarded up to 36° or advanced up to 20° to help idle speed control. The ignition timing control can be performed faster than the control through the throttle valve.

4. Fuel cut-off in deceleration

The ignition timing is retarded temporarily to prevent abrupt increase of the torque when the combustion is restarted.

5. Intake air temperature/coolant temperature

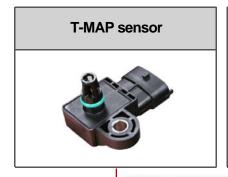
The ignition timing is retarded to prevent knocking if the intake air temperature or coolant temperature is high. The ignition timing is retarded in the following cases.

- The intake air temperature is above 30°C.
- The coolant temperature is above 105°C.

The ignition timing retard for intake air temperature and for coolant temperature is added up for correction.

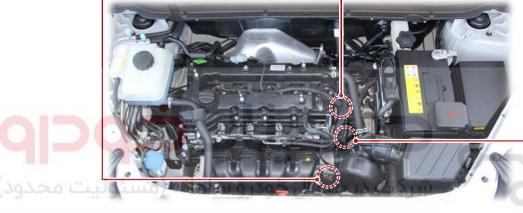
6. ESP/ASR control mode

The ignition timing is retarded to reduce engine torque as fast as possible under the ESP/ASR control mode.

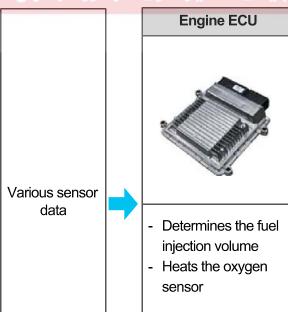

7. Knocking control

If knocking occurs in the cylinder, the ignition angle of the corresponding cylinder is retarded. The coolant temperature is 15°C to 40°C when starting.

5) Warm-Up of Catalytic Converter


(1) Components

▶ Input Components



▶ Output Components

Operates the injector by receiving the signal from ECU

Retards the ignition by receiving the signal from ECU

Heats the oxygen sensor by receiving the signal from ECU

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

(2) Warm-up Control Function

▶ Idle speed control

korando

The idle speed is controlled according to the fuel/air mixture when the engine load is changed, the power steering wheel is turned to its end, the selector lever is in the "D" position and the A/C compressor is in operation. It is also controlled according to the charge level during the purge control operation.

▶ Ignition timing

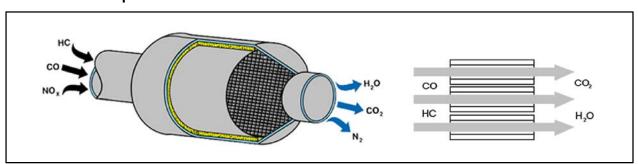
The idle speed is controlled according to the fuel/air mixture when the engine load is changed, The ignition angle can be retarded up to 36° or advanced up to 20° to help idle speed control.

► Air conditioner compressor operation

The air conditioner control unit sends the air conditioner operation signal to the ECU to increase the throttle valve opening amount in order to prevent reduction of the engine speed when the air conditioner compressor is in operation at idling.

► Low voltage

If low voltage is detected by the ECU, the idle speed increases up to 100 rpm selectively under the driving mode until the ignition switch is turned off.


(3) Warm-up Control Operating Conditions

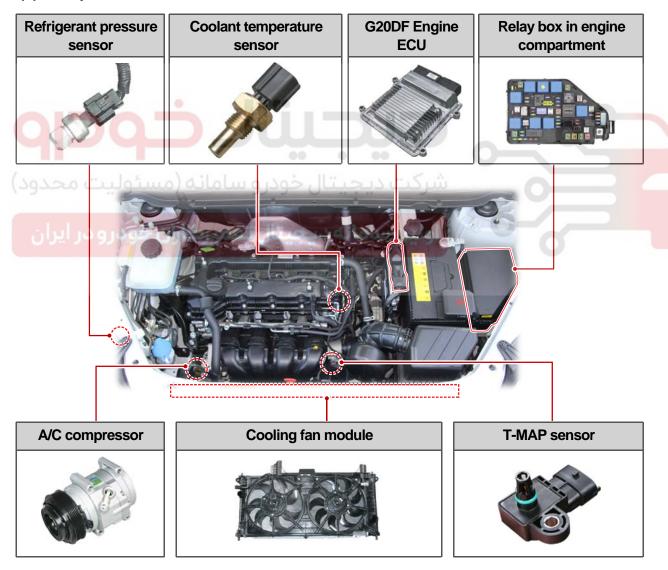
To make the catalytic converter reach a operating temperature, the ignition timing is retarded for about 20 seconds under the following conditions:

- ▶ The coolant temperature is 15°C ~ 40°C when the engine is started.
- ▶ The selector lever is in the "P" or "N" position.

Also, the idle speed increases to 1100 ~ 1500 rpm simultaneously by the idle speed control. However, as soon as the selector lever is shifted to the D position, warming up control of the catalytic converter will be inhibited. The information necessary to perform such control is as follows:

- ► Coolant temperature
- ► Engine rpm
- Intake air mass
- Recognizing idling status
- ► Selector lever position

Modification basis Application basis	
Affected VIN	



6) Cooling Fan Control

(1) Overview of Cooling Fan and A/C Compressor

The cooling system maintains the engine temperature at an efficient level during all engine operating conditions. The water pump draws the coolant from the radiator. The coolant then circulates through water jackets in the engine block, the intake manifold, and the cylinder head. When the coolant reaches the operating temperature of the thermostat, the thermostat opens. The coolant then goes back to the radiator where it cools. The heat from automatic transaxle is also cooled down through the radiator by circulating the oil through the oil pump. There are two cooling fans (180W+120W) in G20DF engine. ECU controls the electric cooling fans with three cooling fan relays to improve the engine torque and air conditioning performance.

(2) Components

ENGINE CONTROL

15-19

(3) Input/Output for Cooling Fan and A/C Compressor

Input		Control	
Coolant temperature sensor	Cooling fan operating condition	ECU	C
T-MAP sensor	Ambient temperature (compressor ON condition)		
Refrigerant pressure sensor	Refrigerant pressure		E
Blower switch condition	Blower switch condition	شرکت اولین	t
ATF temperature	ATF temperature		

Output		
Compressor control	A/O	
Refrigerant pressure	A/C compressor	
Engine load	Cooling fan	
Cooling fan operation	module	
according to temperature		
0-7	Relay box	
	in engine compartment	

Modification basis
Application basis
Affected VIN
WWW.DIGITALKHODRO.COM

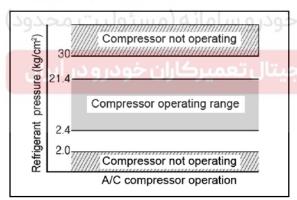
LUBRC/ ION

COOLING

CHARGE SYSTEN

UISE ST.

(4) Cooling Fan and A/C Compressor Control


► Conditions for cooling fan

The cooling fan module controls the cooling fan relay, high speed relay and low speed relay.

The cooling fan is controlled by the series and parallel circuits

A/C switch	Cooling fan	Coolant temperature	Refrigerant pressure	A/C compressor
	OFF Coolant temp.<90℃		-	
OFF	LO	90°C≤Coolant temp.<105°C	-	
	HI	105°C≤Coolant temp.	-	
	LO	Refrigerant pressure<18 bar		
ON	HI		18 bar≤Refrigerant pressure	ON
	HI	105℃≤Coolant temp.<115℃	-	
	HI	115℃≤Coolant temp.	-	OFF (cut)

► A/C compressor OFF conditions

- Coolant temperature: over 118℃
- Approx. 4 seconds after starting the engine
- When abrupt acceleration
- Refrigerant pressure:
 - * OFF below 2.0 kg/cm², then ON over 2.4 kg/cm²
 - * OFF over 32 kg/cm², then ON below 26.0 kg/cm²

▶ Output voltage according to refrigerant pressure

The output voltage from refrigerant pressure sensor is 1.7 V to 3.5 V when the refrigerant pressure is 10 to 24 kgf/cm² with A/C "ON".

► Cooling fan control by ATF temperature

ATF temperature	Cooling fan speed	Remark
Over 110°C	HI	-

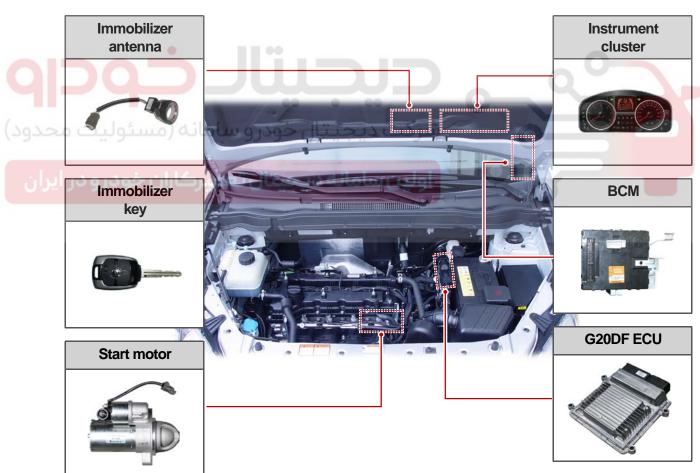
ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

7) Immobilizer Control

(1) Overview

The Immobilizer System provides an additional theft deterrent to the vehicle in which it is installed and prevents it from being started by unauthorized persons. The transponder integrated in the key and the engine control unit have the same code. When the ignition key with the integrated transponder is turned to the ON position, the ECU (Engine Control Unit) checks the crypto code of the key and, if correct, allows the vehicle to start the engine.



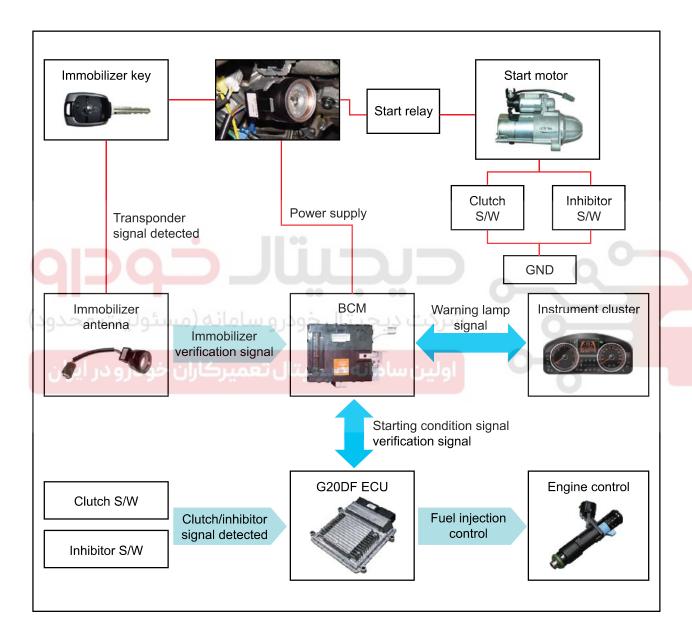
🕹 NOTE

For details, refer to Chapter "BCM".

(2) Components

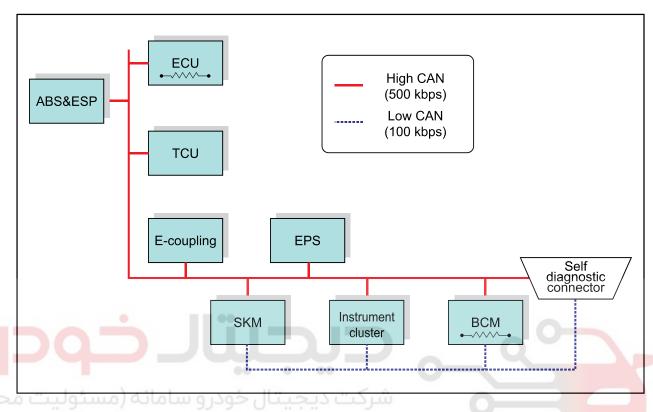
► Conditions for cooling fan

Modification basis Application basis Affected VIN WWW.DIGITALKHODRO.COM


0000-00

► Key approval process

When turning the ignition switch to ON position, the power is supplied to BCM and ECU. ECU communicate with the immobilizer key to check if it is valid crypto code. If it is valid, ECU start to control the engine when turning the ignition switch to START position.


The system has 10 seconds of valid time-out period. If the engine does not start in this period, the key approval process should be done again.

ENGINE CONTROL

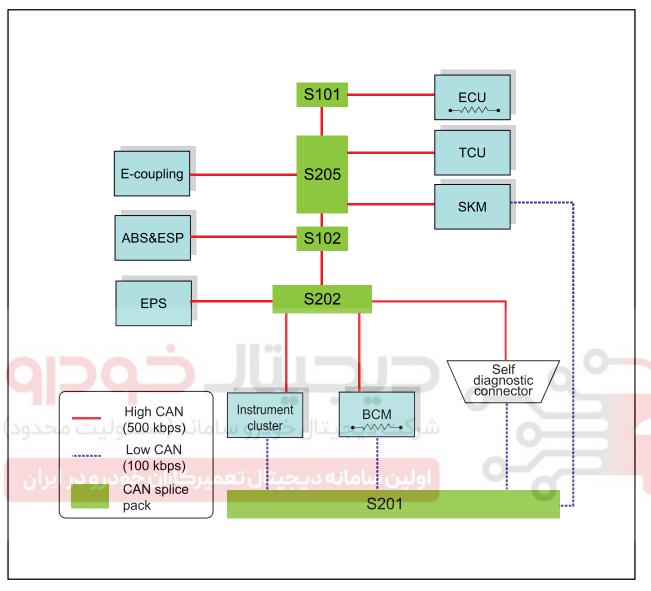
8) CAN Configuration (P-CAN/B-CAN)

(1) CAN Configuration (P-CAN/B-CAN)

Name	Function	
ECU	Electronic Control Unit	
TCU Transmission Control Unit		
EPS	Electronic Power Steering Unit	
ВСМ	Body Control Moudule	
SKM	Smart Key Moudule	

CAN system communicates with the system units in vehicle. It consists of P-CAN and B-CAN according to the communication speed.

P-CAN & B-CAN: SKM, Instrument cluster, BCM, Disgnostic connector


P-CAN: ECU, ABS & ESP, TCU, E-coupling, EPS unit Terminal resistance: installed on ECU and BCM

	Modification basis		
	Application basis		
	Affected VIN		
WWW.DIG	SITALKE	IODRO.CO	M

(2) Wiring Connection of CAN Communication

Splice pack	Wiring	Location
S101	Floor wiring (LH)	Under fuse & relay box in engine compartment
S102 Floor wiring (RH)		Inside of right fender
S201	Main wiring	Behind instrument cluster (cowl cross member)
S202	Main wiring	Behind instrument cluster (cowl cross member)
S205	Floor wiring (LH)	Under driver's door scuff

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

15-25

(3) Input/Output for CAN communication

		Input	Control	Output
	ABS & ESP	Wheel speed, Cruise control mode OFF, System condition, Driving condition, Engine torque control		Acceleration pedal condition, ESP torque control, Engine rpm, Engine torque ABS & ESp
	Instrument cluster	Fuel level, Gear position, Engine warning lamp condition		Acceleration pedal condition, Engine rpm, Engine torque, Coolant temperature, Intake air temperature
	TCU	Engine torque request, Current transmission gear, Target gear, Torque converter lockup condition, Turbine speed, Limphome mode condition, TGS lever position, Transmission oil temperature		Engine rpm EPS
محدود	ВСМ	Immobilizer signal	E C U	Cruise control condition, Water-in-fuel warning sensor, Engine rpm, Glow plug lamp, Vehicle speed, Immobilizer warning lamp, Coolant temperature, Fuel consumption
ايران	ودرو در	نه دیجیتال تعمیرکاران خو	بن ساما	Immobilizer signal, Engine rpm, Starter rotating signal
				Shifting request, Accelerator pedal condition, Engine limphome mode, Cruise control condition, ESP control, Engine rpm, Engine torque condition, Vehicle speed, Coolant temperature, Intake air temperature
				No diagnostic device Diagnostic device

Modification basis
Application basis
Affected VIN
WWW.DIGITALKHODRO.COM

KE ENGINE EM ASSEMBL

INTAKE A SYSTEI

HAUST STEM SY

IGNITION SYSTEM

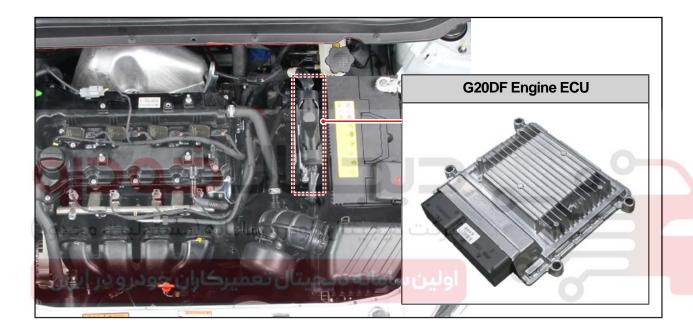
LUBRCA

COOLIN

CHARGE SYSTEM

ISE STA

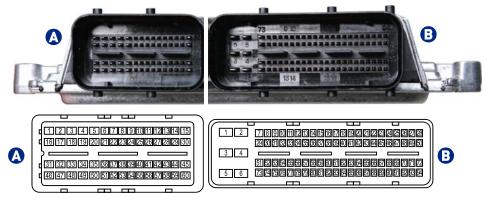
ENGINE CONTRO 15-26 1490-01



CONFIGURATION AND FUNCTION

1490-01 G20DF ENGINE ECU

1) Overview


ECU receives and analyzes signals from various sensors and then modifies those signals into permissible voltage levels and analyzes to control respective actuators. ECU microprocessor calculates injection period and injection timing proper for engine piston speed and crankshaft angle based on input data and stored specific map to control the engine power and emission gas.

ENGINE CONTROL

2) Connector

FOLUNGO

G20DF(EU-V)	ECU
--------	-------	-----

Connec tor	Pin No.	Function	Connec tor	Pin No.	Function
	01	IgnitionA (Cyl.1) GND		17	Injector 2 (Cyl. 2) GND
	02	Injector 1 (Cyl. 1) GND		18	Canister Purge Solenoid SIG
	03			19	Variable Intatke System SIG
ولیت م	04	Starter motor control relay S/W	شركت	20	
ودرودرا	05	Binary lambda sensor Heater Downstream	اولین ،	21	
	06	Binary lambda sensor Downstream GND		22	Knock sensor shield GND
	07	Lambda Sensor Downstream SIG		23	Knock sensor GND
Α	80	Knock sensor SIG	Α	24	MAP and TIA sensor GND
	09	Intake Air Temp SIG		25	-
	10	-		26	Crank position sensor GND
	11	-		27	Coolant Temp GND
	12	Coolant Temp SIG		28	TPS 2 SIG
	13	TPS1 SIG		29	TPS 1/2 sensor GND
	14	TPS supply 5V		30	Electric Throttle Control DC motor output -
	15	Electric Throttle Control DC motor output (+)		31	Ignition C (Cyl.4) GND
	16	Ignition B (Cyl.3) GND		32	Injector 3 (Cyl. 3) GND

Modification basis	
Application basis	
Affected VIN	

15-28 1490-01

Foravdo

Connec tor	Pin No.	Function	Connec tor	Pin No.	Function
	33	OCV GND		47	Injector 4 (Cyl. 4) GND
	34	-		48	-
	35	CAM_IN sensor supply 5V		49	-
	36	-		50	Binary lambda sensor Heater Upstream
	37	-		51	Binary lambda sensor Upstream GND
	38	-		52	-
Α	39	Manifold Air Pressure sensor SIG	Α	53	Binary lambda Sensor Upstream SIG
	40	-		54	T- MAP sensor supply 5V
	41	-		55	-
	42	-		56	Crank Position Sensor SIG(+)
	43	CAM_IN sensor GND		57	- 0-
	44		ديجيتا	58	CAM_IN Sensor SIG
	45	. \		59	
محدود	46	Ignition D (Cyl.2) GND		60	G
skal	01	ECU Power GND	برام از ۱۵	14	
, ایوران	02	Battery Voltage after Main Relay	<i>-</i> - 5 cs c	15	0
	03	ECU Power GND		16	-
	04	Battery Voltage after Main Relay		17	-
	05	ECU Logic GND		18	-
	06	Battery Voltage direct		19	-
В	07	-	В	20	-
	08	-		21	-
	09	-		22	Cruise Control Switch
	10	-		23	-
	11	A/Con Compressor Relay		24	-
	12	-		25	-
	13	-		26	-

ENGINE CONTROL

15-29

ENGINE GENERAL
m ²

ENGINE

INTAKE SYSTEM

FUEL SYSTEM

EXHAU!

r IGNITION SYSTEN

SOLING LL

CHARGE SYSTEM

CRUISE

ENGINE

Connec tor	Pin No.	Function	Connec tor	Pin No.	Function
	27	-		53	Cooling Fan Relay High
	28	-		54	-
	29	-		55	2nd CAN High
	30	-		56	2nd CAN Low
	31	-		57	-
	32	-		58	-
	33	-		59	-
	34	-		60	-
	35	-		61	-
	36	-		62	Brake Switch(NC)
	37	-		63	Clutch Switch (NC)
	38	1100		64	-
70	39			65	0
	40			66	
ولين و	41)	دیجیتال خودر و سامانه	شركهت	67	A/C Sensor SIG
	42	-	اولین،	68	
ودرودر	43	Powersteering sensor GND		69	0
	44	Cruise Control switch GND		70	-
	45	A/C sensor GND		71	Accelerate Pedal Sensor 1
	46	-		72	Accelerate Pedal Sensor 2
	47	-		73	-
	48	-		74	Main Power Relay GND
	49	Accelerate Pedal Sensor 1 sensor GND		75	Electrical Fuel Pump Relay GND
	50	Accelerate Pedal Sensor 2 sensor GND		76	-
	51	Battery Voltage after Ignition Key		77	CAN communication High
	52	Starter motor control relay, Low side		78	CAN communication Low

Modification basis	
Application basis	
Affected VIN	

15-30 1490-01

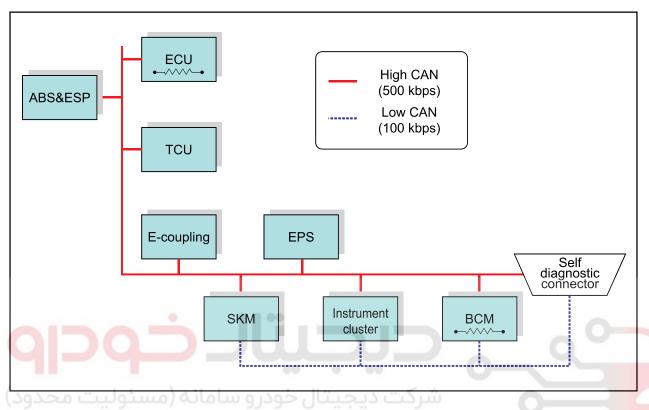
koravdo

Connec tor	Pin No.	Function	Connec tor	Pin No.	Function
	79	Clutch Switch (NO)		87	-
	80	Vehicle Speed sensor SIG (FRT)		88	Cruise Control Sensor supply 5V
	81	-		89	-
	82 -	-		90	-
В	83	-	В	91	-
	84	Brake Switch (NO)		92	-
	85	-		93	Accelerate Pedal Sensor 1 supply 5V
	86	-		94	Accelerate Pedal Sensor 2 supply 5V

ENGINE CONTROL

15-31

3) Input/Output for ECU


Input]	Control		Output
IG "ON" B+				
START signal				OCV control
Knock sensor 1				A/C compressor control
T-MAP sensor				
Front oxygen sensor				Injector control
Rear oxygen sensor		Е		Ignition timing control
Coolant temperature sensor	→	E C U		VIS valve control
Crankshaft position sensor		ÜΞ		Purge control solenoid valve control
Accelerator pedal	جيتال	رکت دیا	ŵ	Cooling fan control
position sensor 1,2	بانه دې	ولين ساه		Self diagnosis
Throttle position sensor 1,2				CAN
Camshaft position sensor				
A/C compressor ON/OFF				
CAN				

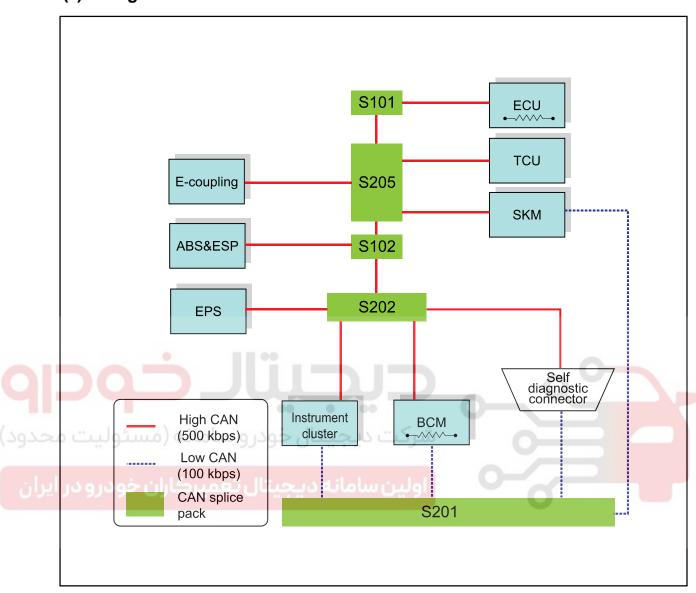
Modification basis Application basis Affected VIN WWW.DIGITALKHODRO.COM

4) CAN Configuration (P-CAN/B-CAN)

(1) CAN configuration (P-CAN/B-CAN)

Name	Function		
ECU ECU ILIO	Electronic Control Unit		
TCU	Transmission Control Unit		
EPS	Electronic Power Steering Unit		
всм	Body Control Moudule		
SKM	Smart Key Moudule		

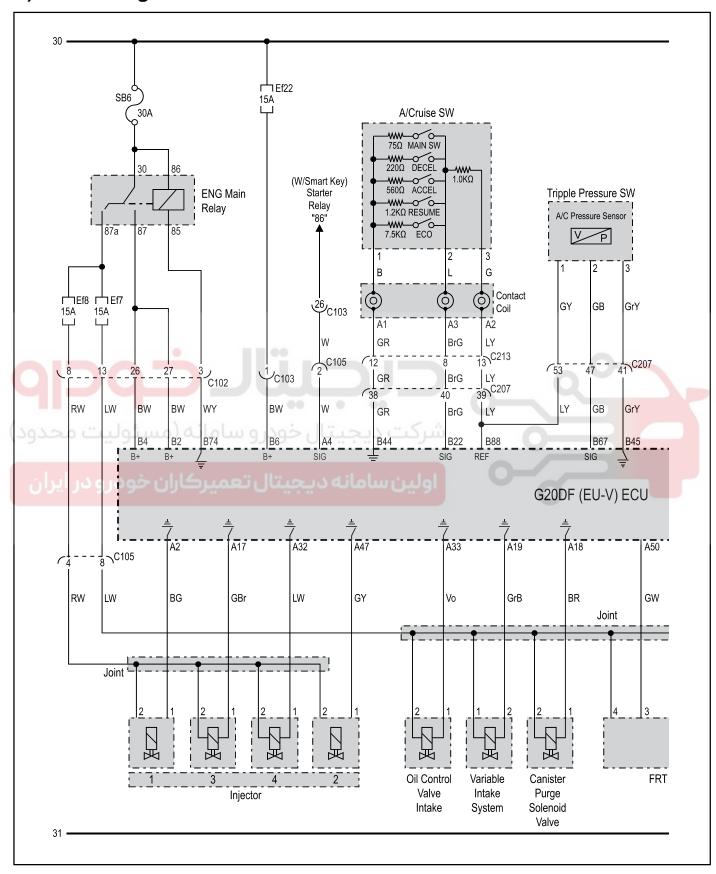
CAN system communicates with the system units in vehicle. It consists of P-CAN and B-CAN according to the communication speed.


P-CAN & B-CAN: SKM, Instrument cluster, BCM, Disgnostic connector

P-CAN: ECU, ABS & ESP, TCU, E-coupling, EPS unit

Terminal resistance: installed on ECU and BCM

Foravdo


(2) Wiring Connection of CAN Communication

Splice pack	Wiring	Location
S101	Floor wiring (LH)	Under fuse & relay box in engine compartment
S102	Floor wiring (RH)	Inside of right fender
S201	Main wiring	Behind instrument cluster (cowl cross member)
S202	Main wiring	Behind instrument cluster (cowl cross member)
S205	Floor wiring (LH)	Under driver's door scuff

5) Circuit Diagram of G20DF ECU

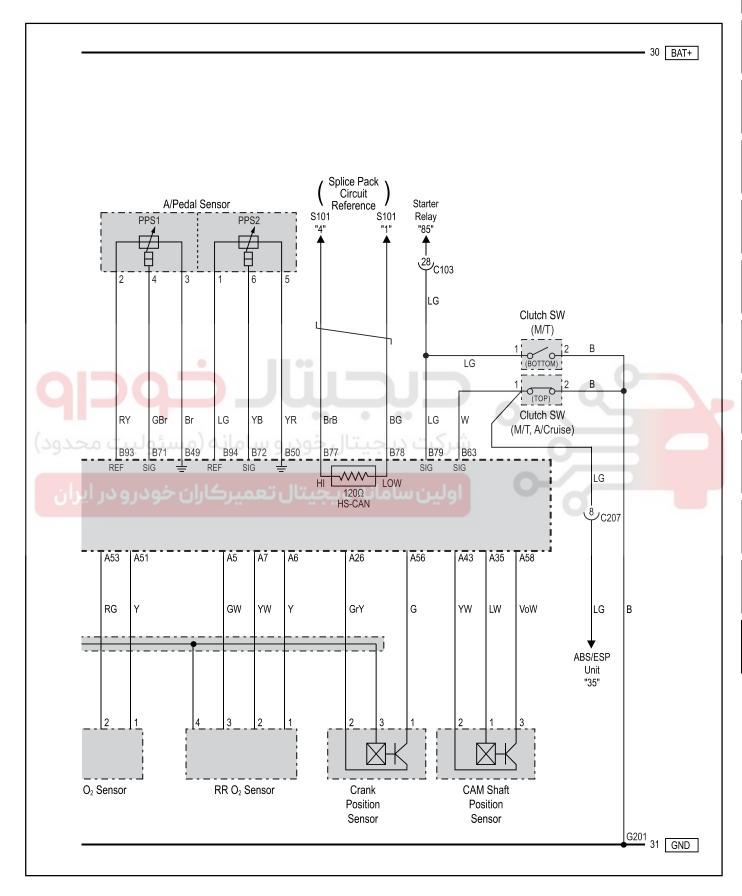
ENGINE CONTROL

15-35

KE ENG

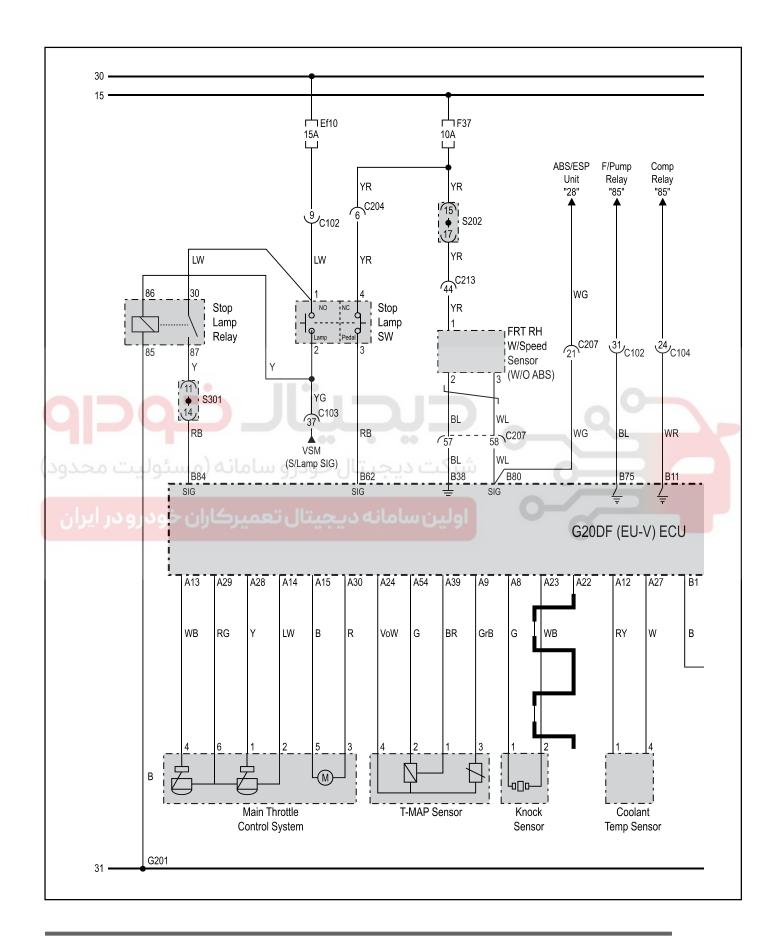
STEM S

EXHAUST SYSTEM


IGNITION SYSTEM

> OLING STEM

CHARGE SYSTEM


> XUISE ONTRO

ENGINE

1490-01

ENGINE CONTROL

KORANDO 2013.08

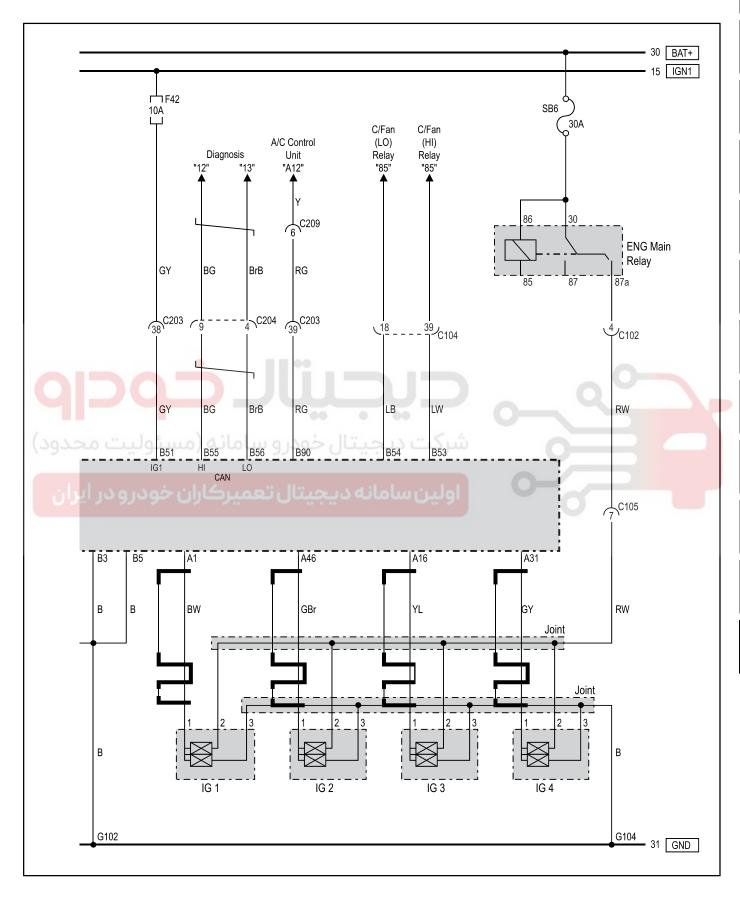
Modification basis
Application basis
Affected VIN

E CENGII BL GENER

ENGINE ASSEMBL

INTAKE

ST FUE


IGNITION SYSTEM

DING LOBI

CHARGE

YOUSE ST.

ENGINE

15-38 2245-02

FOLUNDO

2245-02 INJECTOR

1) Overview

ECU controls the injector ground in each cylinder according to the injection timing by receiving the piston position signal and engine rpm signal from crankshaft position sensor and camshaft position sensor. ECU opens the solenoid valve in injector to inject the fuel into combustion chamber by grounding it. At this moment, the injected fuel is changed to gas from liquid.

The injection timing is controlled by ECU according to the engine rpm signal and various sensor information, and the firing order is 1-3-4-2.

ENGINE CONTROL

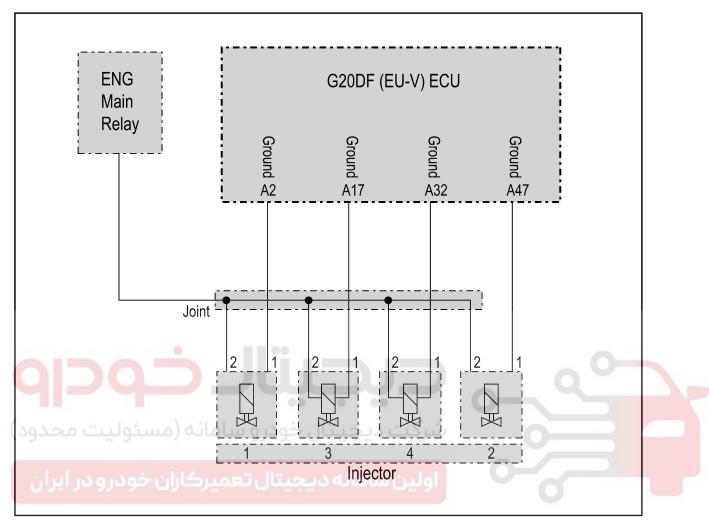
Modification basis	
Application basis	
Affected VIN	

2245-02

FOLUNDO

2) Components

- 1. Inlet tube
- 2. Housing
- 3. Filter & adjusting tube
- 4. Pawl piece
- 5. Armature tube
- 6. Seat sleeve
- 7. Ball
- 8. Orifice
- 9. Seat


- 10.Lower guide
- 11.Lower screen
- 12.Lower external O-ring
- 13. Valve body
- 14.Armature
- 15.Non-magnetic cell
- 16.Spring
- 17.Upper external O-ring

Modification basis	
Application basis	
Affected VIN	

2245-02

3) Circuit Diagram

Static flow	187.2 gr/min
Specified component resistance	14.5 \pm 0.7 Ω at room temperature
Service check	 It is normally supplied with battery power. However, its voltage gets close to 0 V (0 V theoretically) and fuel is sprayed through the injector when the ECU drives (grounds) the injector. When the engine control module does not ground the injector, the injector closes and peak voltage is generated in a moment. Place the injector into a transparent container (such as a beaker) and operate the injector forcibly to check the injection pattern and droplet in order to find a cause of misfire.

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

ENGINE

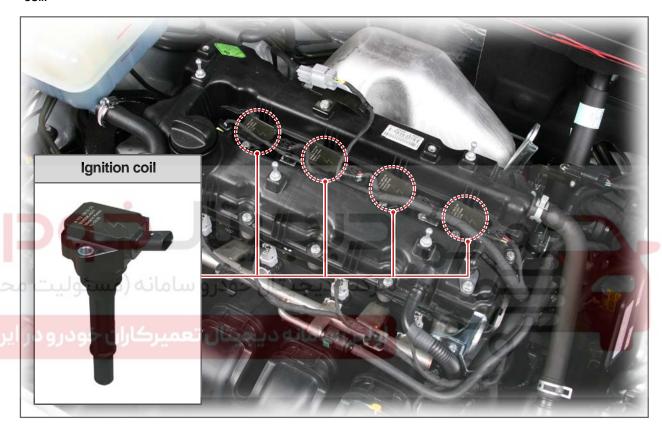
INTAKE SYSTEM

AUST TEM SY

IGNITION SYSTEM

> OOLING YSTEM

CHARGE SYSTEM

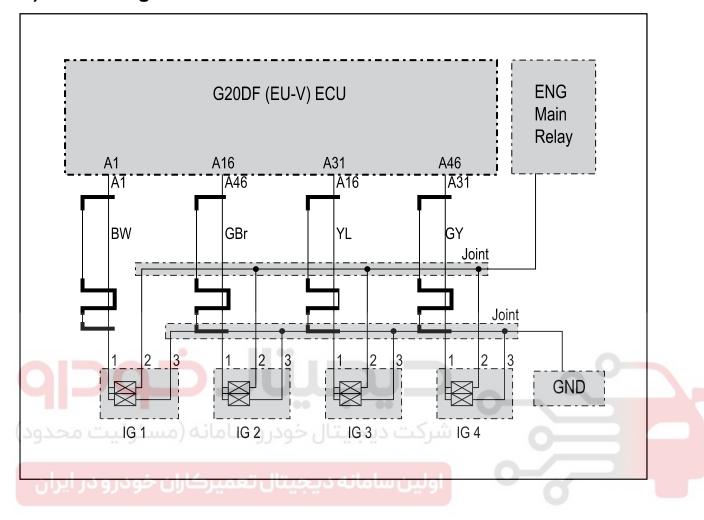

> KUSE ONTRO

1443-01 IGNITION COIL

1) Overview

The G20DF engine is equipped with the independent type direct ignition system that the ignition coil is installed in each cylinder.

This independent type direct ignition system provides easy installation and less igntion energy loss. The ignition coil in this system has long cylindrical shape, thus is called stick type or pencil type ignition coil.

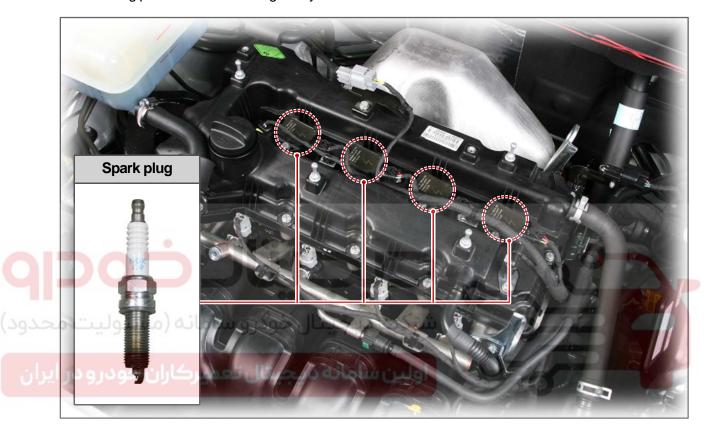

Description	Specification	
Component resistence	Primary coil	800 mΩ
(20℃)	Secondary coil	Not measurable (High voltage Diode)
Generated voltage	Primary coil	Max 400 V
Generated Voltage	Secondary coil	5~20 kV
Operating temperature	-40℃	~ 130℃
Operating current Prin		7.5 A ± 7.0 A

Modification basis	
Application basis	
Affected VIN	

1443-01

3) Circuit Diagram

ENGINE CONTROL


15-43

1443-03 SPARK PLUG

1) Overview

The spark plug in G20DF engine is made of iridium alloy.

The iridium spark plug improves the fuel economy and ignition efficiency with high starting performance, accelerating performance and idling safety.

Туре	Appearance	At beginning of ignition	In 3 ms
Iridium spark plug (G20DF)			C

ENGINE CONTROL
KORANDO 2013.08

Modification basis

Application basis
Affected VIN

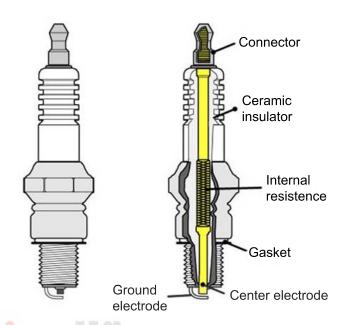
ENGINE ASSEMBL

> INTAKE SYSTEM

FUEL SYSTEM

SYSTE

GNITION


LUBRC/ ION

COOLIN SYSTE

CHARGI SYSTEN

CRUISE SONTRO

► Ceramic insulator

This isolates the high voltage at the electrode, ensuring that the spark happens at the tip of the electrode and not anywhere else on the plug.

اولین سامانه دیجیتال تعمیرکاران خو Connector

This is connected to the ignition coil to get the electric power.

▶ Gasket

Because the spark plug also seals the combustion chamber or the engine when installed, seals are required to ensure there is no leakage from the combustion chamber.

▶ Interal resistance

The sparking noise may cause RF noise in audio system. To reduce this, the internal resistance is installed in the spark plug.

▶ Center electrode

The electrode is an electrical conductor used to make a spark ti ginite the fuel in combustion chamber.

ENGINE CONTROL

KORANDO 2013.08

Modification basis
Application basis
Affected VIN

1430-14 CAMSHAFT POSITION SENSOR

1) Overview

The camshaft position sensor is hall-effect type sensor. When the intake camshaft is rotating, the electron in hall element goes out to output line. ECU recognizes this electron to determine the camshaft position. ECU can recognize that the No. 1 cylinder is under compression stroke by using this voltage signal (hall voltage). The rotating speed of camshaft is half of the crankshaft and controls engine's intake and exhaust valves. By installing sensor on the camshaft, can recognize specific cylinder's status, compression stroke or exhaust stroke, by using camshaft position when the piston is moving toward TDC (OT). Especially when started first, it is difficult to calculate the stroke of a specific cylinder with only crankshaft position sensor. Accordingly, camshaft position sensor is necessary to identify the cylinders correctly during initial starting. However, when engine is started, ECU learns every cylinder of the engine with crankshaft position sensor signals so can run the engine even though the camshaft position sensor is defective during engine running.

Modification basis
Application basis
Affected VIN

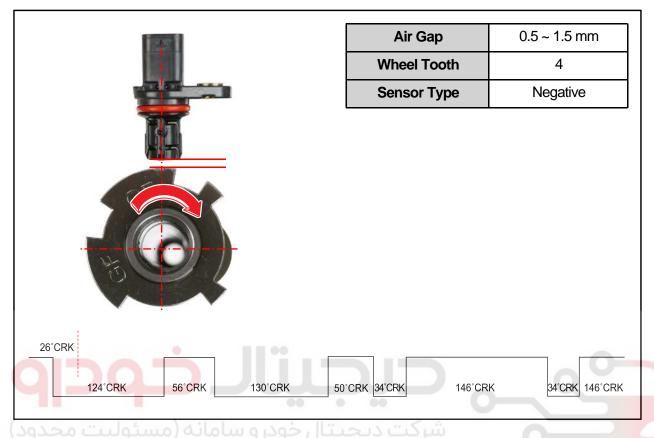
ENGINE

ENGINE

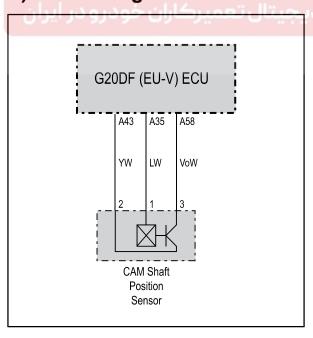
INTAKE SYSTEM

ST FU

SNITION


LUBRCAT ION

COOLIN SYSTE


CKUISE

2) Features

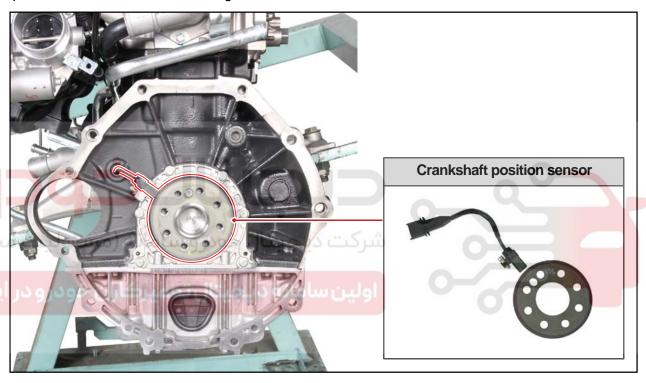
3) Circuit Diagram

Differently from magnetic pickup type, the hall sensor type must use the reference voltage. The internal hall voltage changes the signal voltage according to external electro-magnetic field.

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

INTAKE SYSTEM


FUEL SYSTEM

1128-37 CRANKSHAFT POSITION SENSOR

1) Overview

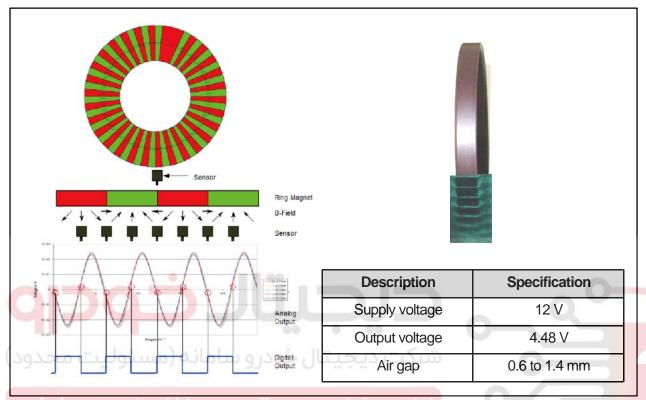
The crankshaft position sensor consists of the active type MR sensor and the magnetic trigger ring. The sensor is supplied 5 V of power. When the crankshaft rotates, the magnetic field is changed. Four internal resistors (MR element) in MR sensor detect the changes of resistance and converts it to the current value to determine the position/speed of the crankshaft.

The crankshaft position sensor is important signal and used to determine the injection timing and injection volume by detecting the piston position. The magnetic trigger ring sends total 58 signals. Each piston position is determined based on long tooth.

🕹 NOTE

Magneto Resistance Sensor Element

When a magnetic field is applied to the metal or semi-conductor, the resistance will be raised. This is called the magnetoresistance effect, and depends on the electron mobility of the material.


Modification basis	
Application basis	
Affected VIN	

1128-37

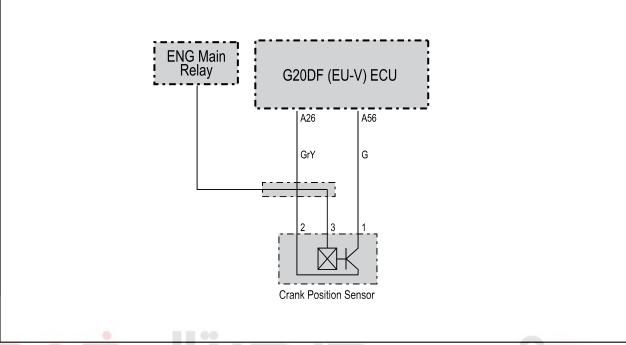
3) Features

- 1. Wave for MR sensor: Rectangular type wave
- 2. The magnetic trigger ring has the magnetic field.
- 3. There is the angle difference of 114° in #1 cylinder at long tooth.

A CAUTION

Do not work near the tool or equipment with magnetic field to prevent the magnetic trigger ring from losing the magnetic field.

ENGINE CONTROL


Modification basis	
Application basis	
Affected VIN	

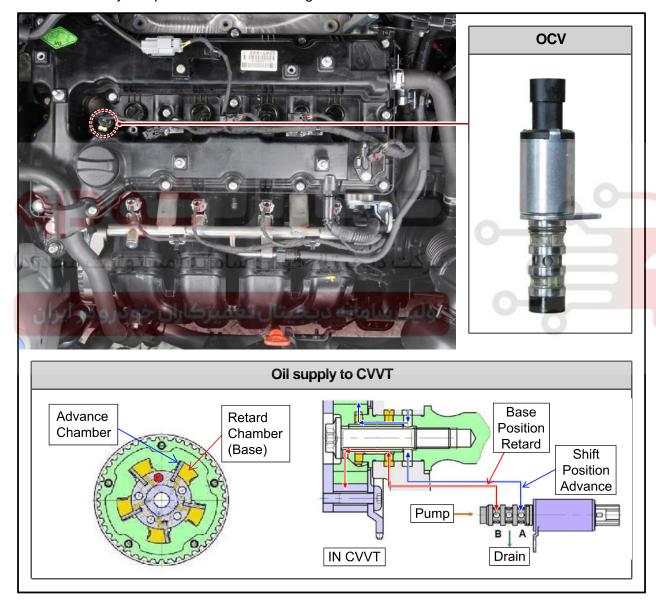
korando

1128-37

15-49

3) Circuit Diagram

Modification basis Application basis Affected VIN


korando

1311-26 OCV (Oil Control Valve)

1) Overview

The CVVT (Continuous Variable Valve Timing) gear is installed on the intake camshaft sprocket in G20DF engine.

The OCV controls the oil to CVVT gear by receiving the signal from engine ECU. This controls the intake camshaft to most advance, hold, and most retard conditions resulting in valve overlap and underlap. This reduces the pumping loss, improves the combustion stability, and increases the volume efficiency. Thus, the fuel economy is improved and the emission gas is reduced.

ENGINE CONTROL

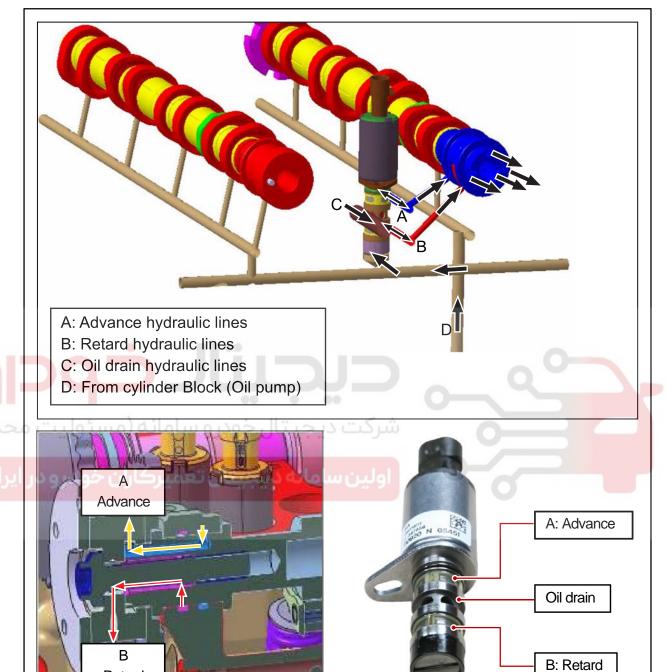
Щ

INTAKE SYSTEM

SYSTEN

NITION EY

LUBRCAT ION


SYSTEM

STARTIN G

CRUISE CONTRO

ENGINE

2) Oil Flows in OCV

ECU changes the oil line to advance (A) or retard (B) line to send the oil to intake camshaft sprocket from oil pump.

Modification basis	
Application basis	
Affected VIN	

Retard

From oil pump

3) CVVT Conditions According to OCV Control

ECU controls the OCV to control the CVVT in most retard, hold and most advance conditions.

Most retard condition

Starts operation in idling.

OCV control: 0% duty control

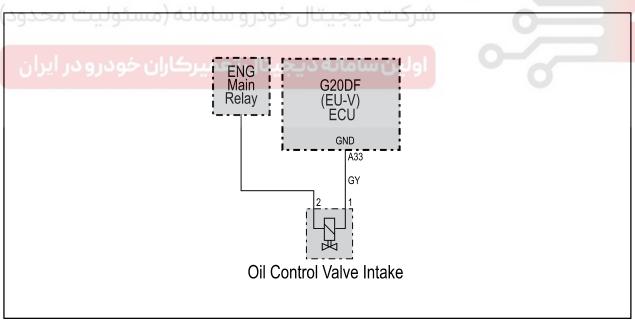
The oil is supplied to retard chamber and CVVT housing is fixed to rotor.

Hold condition

Maintains current timing.

OCV control: 50% duty control

The oil is supplied to retard chamber and advance chamber to keep current timing.


Most advance condition

Increases the power.

OCV control: 100% duty control. Intake camshaft controls by BTDC 35°

The oil is supplied to advance chamber and the oil in retard chamber is drained. Thus, the housing is advanced by vane resulting in advance timing.

4) Circuit Diagram

ENGINE CONTROL

GENER

ENGINE

INTAKE SYSTEN

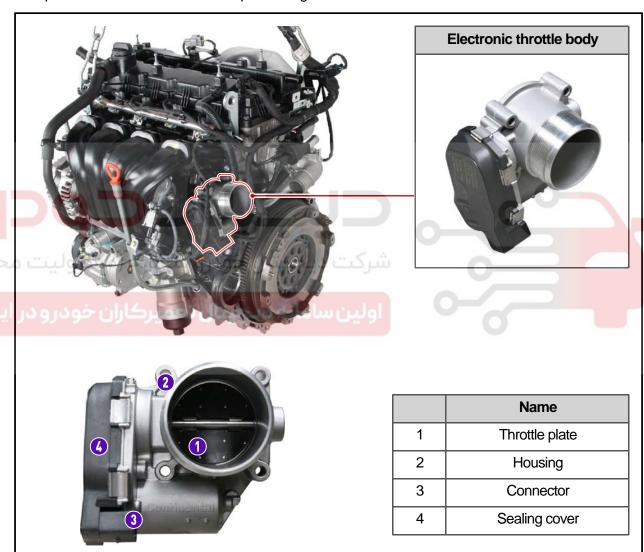
HAUST STEM 9

IGNITION SYSTEM

> OOLING YSTEM

N CHAK

CRUISE SONTRO

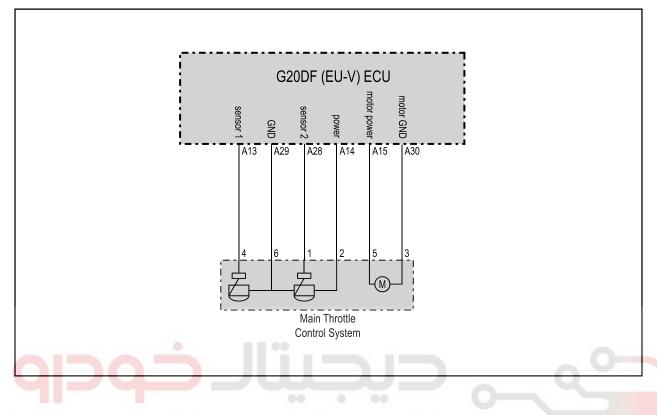

ENGIN

1740-07 ELECTRONIC THROTTLE BODY

1) Overview

Electronic throttle body control system contains electronic throttle body, accelerator pedal position sensor and ECU as basic elements. Throttle body consists of actuator, throttle plate and throttle position sensor. The actuator is driven by motor.

The engine ECU operates the throttle actuator according to the accelerator pedal position. The electronic throttle body consists of two potentio meters to determine the various engine load conditions. The potentio meters send the throttle position signal to ECU.



Modification basis	
Application basis	
Affected VIN	

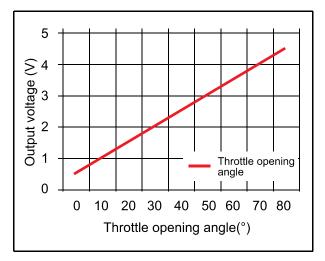
1740-07

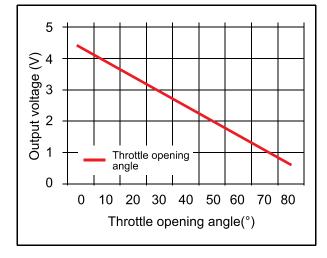
3) Circuit Diagram

شرکت دیجیتال خودرو سامانه (مسئولیت محدود)

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

ENGINE CONTROL


KORANDO 2013.08


Modification basis
Application basis
Affected VIN

korando

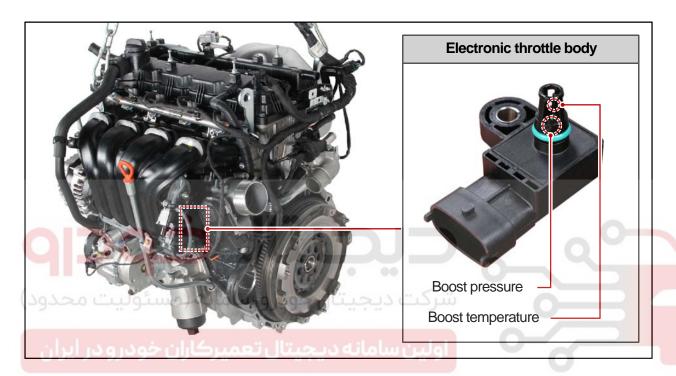
1740-07

4) Output of Position Sensor

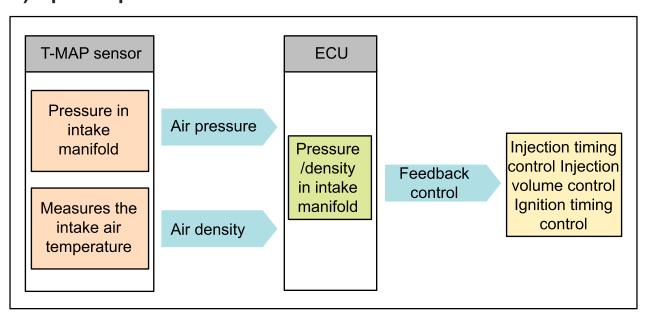
5) Specification of Throttle Motor & Position Sensor

Actuator	11100	Item		Specification
		Resistance		$1.5 \Omega \pm 0.3 \Omega$
DC motor	Inductance		$0.9~\mathrm{mH}\pm0.1~\mathrm{mH}$	
ه (مسئولیت م	Mخودرو سامان	ax. continuous curre	ent	2.5 A
	Current with unloaded (at idling)		0.8 A or lower	
داران خودرو در ا <u>ب</u>	(1st, 2r	Resistance value (1st, 2nd measurement in parallel)		2 kΩ ± 20 <mark>%</mark>
Throttle position		TPS1	Idle	0.5 V ± 0.1 V
sensor	Voltage	11 01	WOT	4.6 ± 0.1 V
		TPS2	Idle	$4.5 \pm 0.1 V$
			WOT	$0.4 \pm 0.1 \ V$

15–56 1740-03


FOLUNDO

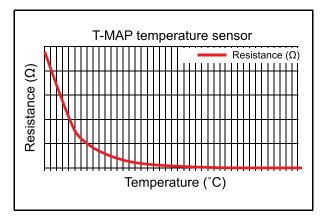
1740-03 T-MAP SENSOR


1) Overview

T-MAP sensor is installed between electronic throttle body and intake manifold.

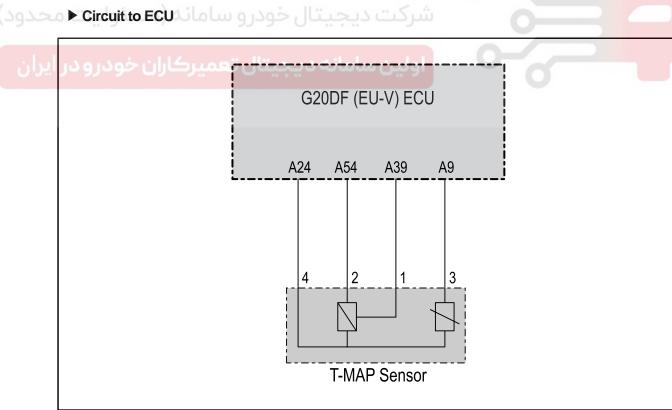
T-MAP sensor contains the pressure sensor to detect the pressure changes in intake manifold and NTC thermister to measure the air mass flow. T-MAP sensor is used to determine the basic feul injection volume, injection timing, and ignition timing.

2) Input/Output for T-MAP Sensor



ENGINE CONTROL

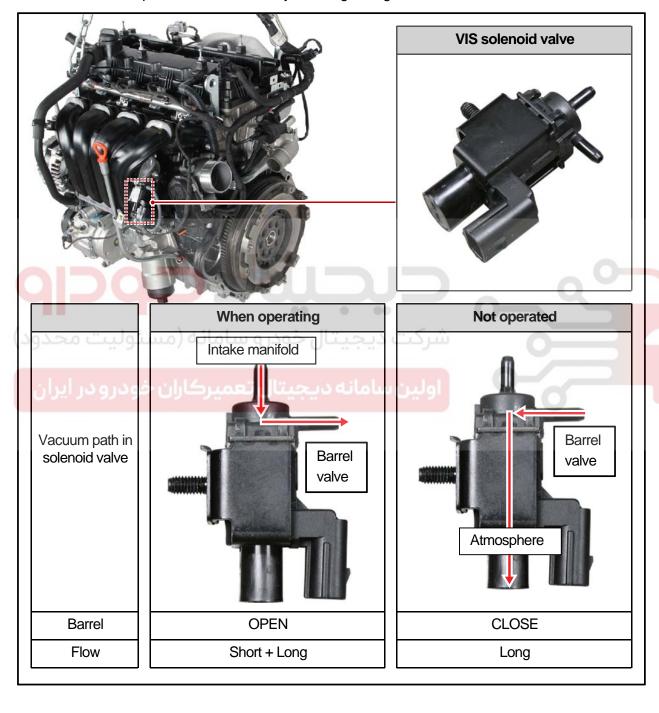
Modification basis	
Application basis	
Affected VIN	


3) Features

▶ Intake air temperature sensor

Intake air temperature (℃)	Resistance (Ω)
-40	48153
-20	15614
0	5887
20	2510
40	1199.6
60	612.3
80	329.48
100	186
130	85.45

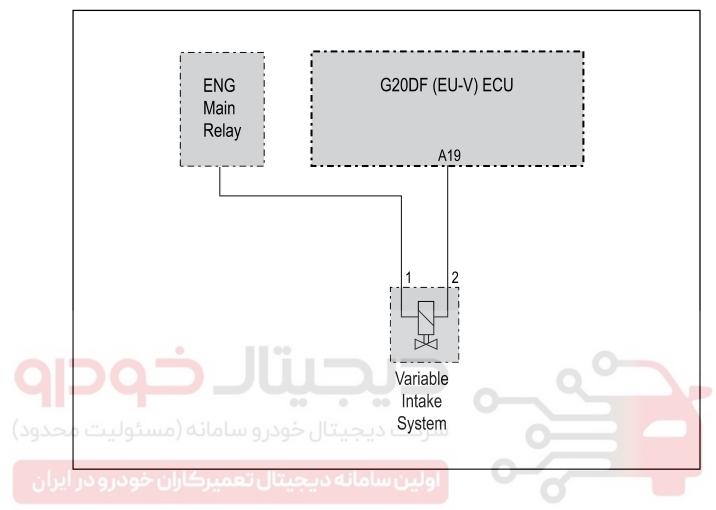
4) Circuit Diagram


15-58 1628-04

1628-04 VIS (Variable Induction Manifold) **SOLENOID VALVE**

1) Overview

VIS solenoid valve operates the VIS barrel by receiving the signals from ECU.



FOLUNGO

1628-04

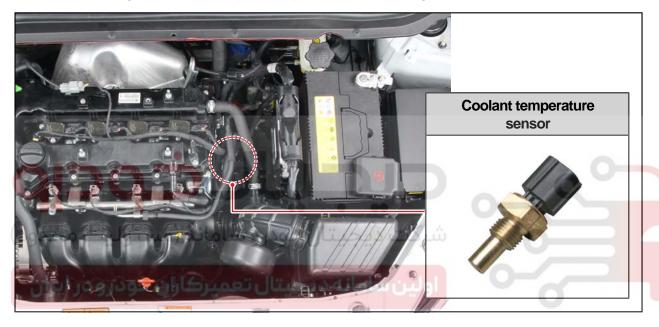
15-59

2) Circuit Diagram

CRUISE

ENGINE

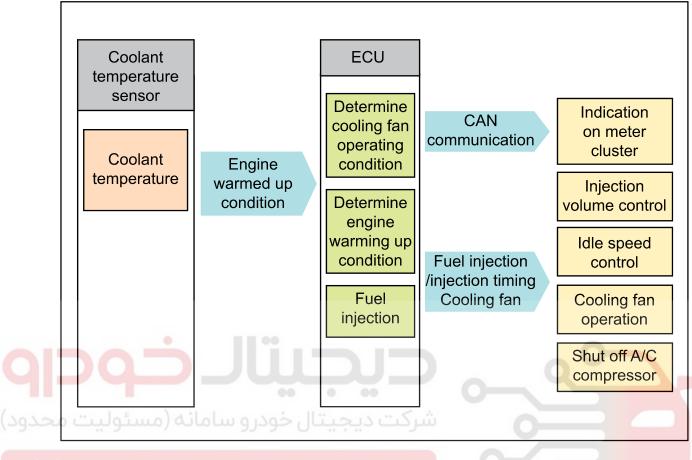
15-60 1430-07



1430-07 COOLANT TEMPERATURE SENSOR

1) Overview

Coolant temperature sensor uses NTC thermister that the resistance goes down as the temperature goes up. Coolant temperature sensor corrects the fuel injection volume according to the coolant temperature. When the engine is cold, the engine output could be insufficient. This may cause the increase of exhaust gas volume, and accordingly, the fuel injection volume is also increased. This sensor has the functions as below (through CAN communication):


- Shows the coolant temperature on meter cluster
- Stops cooling fan and A/C compressor operation when the engine is overheated

ENGINE CONTROL

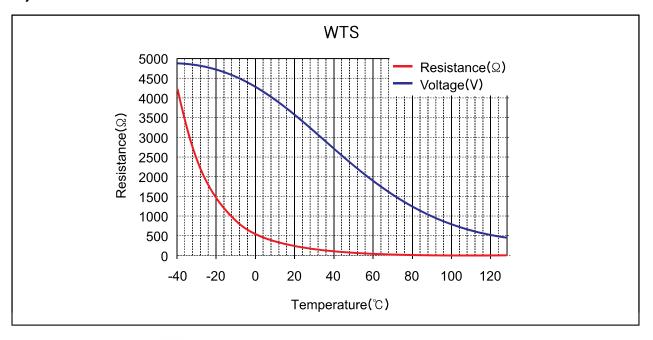
korando

2) Input/Output for Coolant Temperature Sensor

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

3) Control Elements According to Coolant Temperature

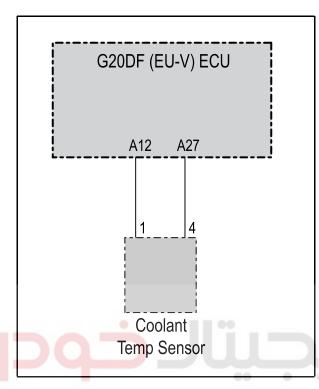
- Injection period


Idle speed is increased to 1,500 rpm from 1,140 rpm according to the coolant temperature.

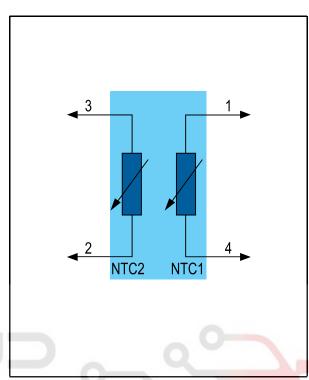
- Fuel injection volume control
 Helps engine warming up by controlling the fuel injection volume according to the coolant temperature.
- Cooling fan operation

 Cools down the engine by operating the cooling fan according to the coolant temperature.
- A/C operation
 Stops the A/C compressor according to the coolant temperature.

4) Characteristic Curve


Temperature (°C)	Resistance (Ω)	Voltage (V)
-40	42695.5	4.896
-20	14641.6	4.705
0	5681.8	4.298
عرکاران خود و در ایران	2449.9	3.615
40	1155.9	2.747
60	589.4	1.910
80	321.4	1.259
100	185.7	0.819
120	112.9	0.536
130	89.52	0.436

ENGINE CONTROL KORANDO 2013.08


15-63

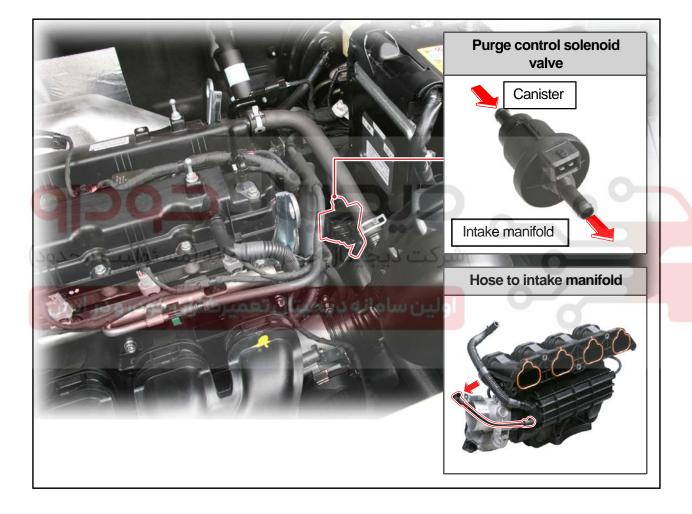
5) Circuit Diagram

► Circuit to ECU

▶ Internal circuit of sensor

Modification basis Application basis Affected VIN WWW.DIGITALKHODRO.COM

15-64 1628-04

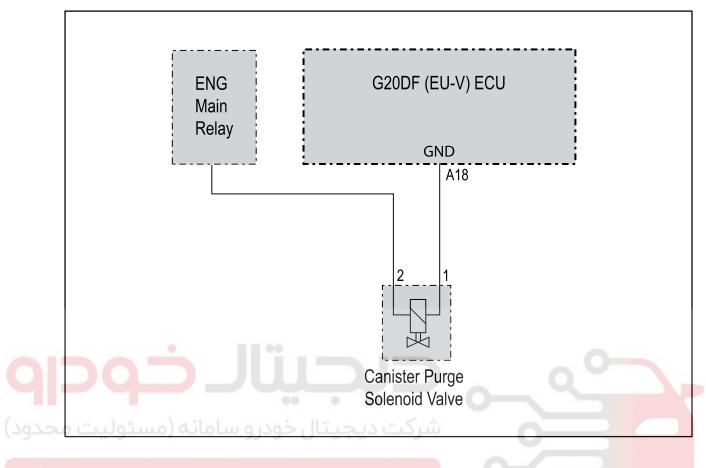

FOLUNDO

1628-04 PURGE CONTROL SOLENOID VALVE

1) Overview

The purge control solenoid valve is located in the vacuum line between canister and intake manifold. It opens and closes the enclosed vacuum line according to the engine load conditions.

When the coolant temperature reaches to 80°C (normal operating temperature) or the idle speed goes over the specified rpm, the purge control solenoid valve provides the evaporative gas in canister into the combustion chamber when ECU opens the enclosed vacuum line between canister and intake manifold.



ENGINE CONTROL

korando korando 1628-04

15-65

5) Circuit Diagram

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

Modification basis
Application basis
Affected VIN

WWW.DIGITALKHODRO.COM

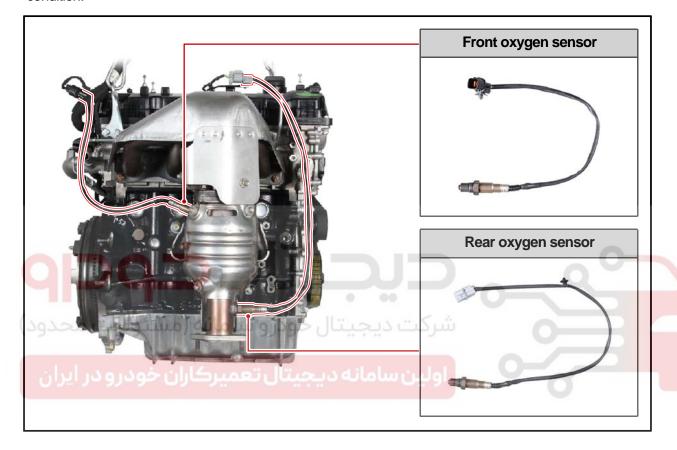
IGNITION SYSTEM

LUBRC 1 ION

COOLIN SYSTEI

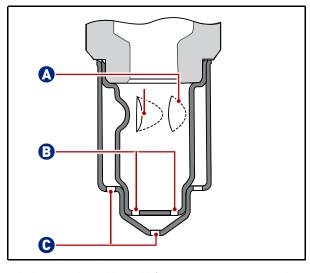
CHARG

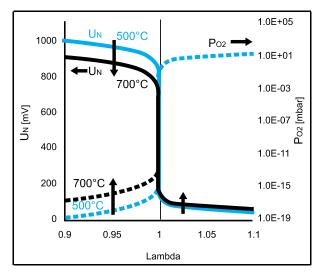
RUISE ST


15–66 1430-09

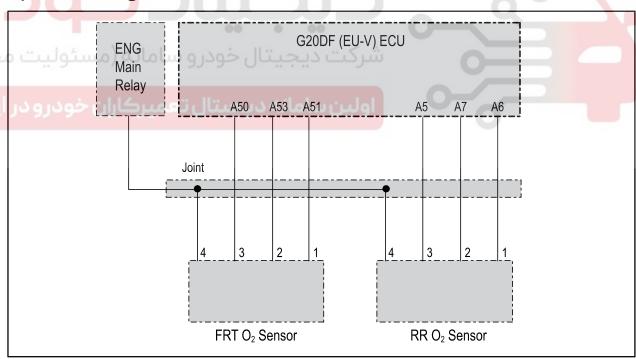
Foravdo

1430-09 OXYGEN SENSOR


1) Overview


The oxygen sensors are installed to the front and rear of the WCC (Warming up Catalyst Converter) to measure oxygen content in the exhaust gas in order to check the air/fuel mixture ratio and combustion condition.

2) Function


korando

- A. Inner tube with swirl flaps creates gas rotation around sensor element.
- B. Plate between sensor and front hole
- C. Optimized regurding gas flow, good dynamic response

3) Circuit Diagram

Service check

- Upstream oxygen sensor: It generates sine wave at a regular interval in a normal condition on 450 mV basis. If the waveform is stretch upward, it indicates rich fuel and lean air status.
- Downstream oxygen sensor: It generates constant voltage (approx. 700 mV) in a normal condition. However, it generates sine wave when the catalyst is malfunctioning.

Modification basis	
Application basis	
Affected VIN	

2010-01

korando

2010-01 ACCELERATOR PEDLA POSITION SENSOR

1) Overview

The accelerator pedal sensor converts the position of the accelerator pedal into an electric signal and sends this information to the ECU. There are 2 sensors in each accelerator pedal sensor. The signal from the No. 1 accelerator pedal sensor (ACC 1) is an element used to determine the fuel injection volume and timing while the signal from the No. 2 accelerator pedal sensor (ACC 2) is used to check the validity of the signal value from the No. 1 sensor.

When the No. 1 and 2 accelerator pedal sensors are all defective, the ECU stores the output DTCS, the acceleration response becomes poor, and it becomes hard to increase the engine rpm.

ENGINE CONTROL KORANDO 2013.08 Modification basis
Application basis
Affected VIN

GENER

ENGINE

INTAKE SYSTEM

ST FUE

IGNITION SYSTEM

> OLING STEM

SYSTEN

CRUISE

ENGINE

2) Features

1. Determines the injection timing and fuel injection volume

ACC1: Main sensor, determines injection timing and fuel injection volume (5.0 V)

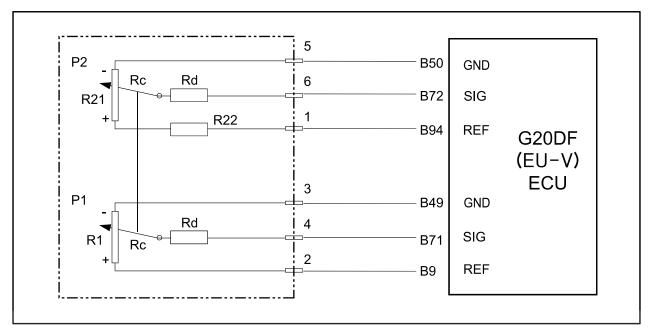
ACC2: Checks if ACC1 is OK (2.5 V)

2. Failure in ACC1 or ACC2

Controls the torque reduction by 50%

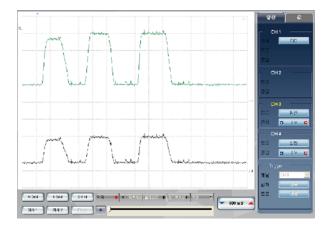
3. Failure in ACC1 and ACC2

Changes to limp home mode (1,300 to 1,400 rpm)


	Accelerator pedal 1	Accelerator pedal 2
Full resistance of potentiometer	1.2 kΩ	1.7 kΩ
Maintenance	 Check the resistance of individual component. Check the resistance changes in individual component while operating the pedal. 	

		Pedal position	Specified value	
Appelorator podal 1	Idle	0.4 V to 0.6 V		
	Accelerator pedal 1	When fully depress the pedal	4.3 V to 4.7 V	
	Accelerator pedal 2	شرکنال دورالطال دور	0.2 V to 0.3 V	
		When fully depress the pedal	2.1 V to 2.4 V	
ايران	نال تعمیرکاران خودرو در	اولین سامانه دیجین		

Modification basis	
Application basis	
Affected VIN	



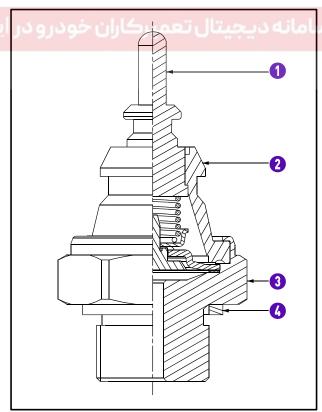
3) Circuit Diagram

4) Operating Wave

Measuring condition	Accelerating 3 times	
امانه (مسئولیت محدود	Channel #3 (P1)	Channel #4 (P2)
Measuring میرکاران خودرو در ایران	Measuring probe (+) B71 Measuring probe (-) B49	Measuring probe (+) B72 Measuring probe (-) B50

No.1 uses 5 V Ref, and No.2 uses 2.5 V Ref.

ENGINE CONTROL


15–71

1535-30 OIL PRESSURE SWITCH

1) Overview

If the oil pressure in engine drops below 0.5 bar during engine running, the engine oil warning lamp in the instrument cluster comes on.

- 1.Adapter
- 2. Base
- 3. Seal washer
- 4. Body

Modification basis
Application basis
Affected VIN
WWW.DIGITALKHODRO.COM

ENGINE

ENGINE

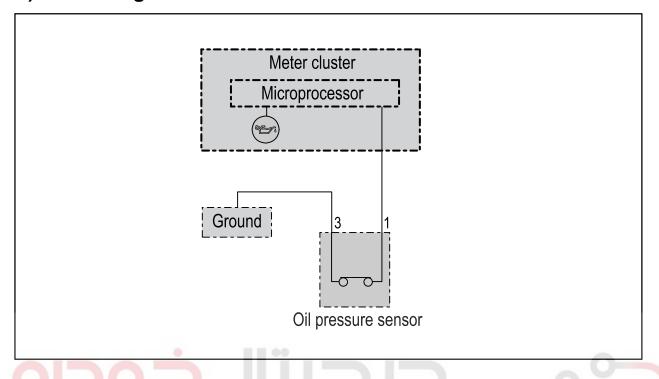
INTAKE SYSTEM

FUEL SYSTEM

EXHAUS SYSTEM

IGNITION SYSTEM

LUBRC ION


E COOLI

CRUISE CONTRO

1535-30

Foravdo

2) Circuit Diagram

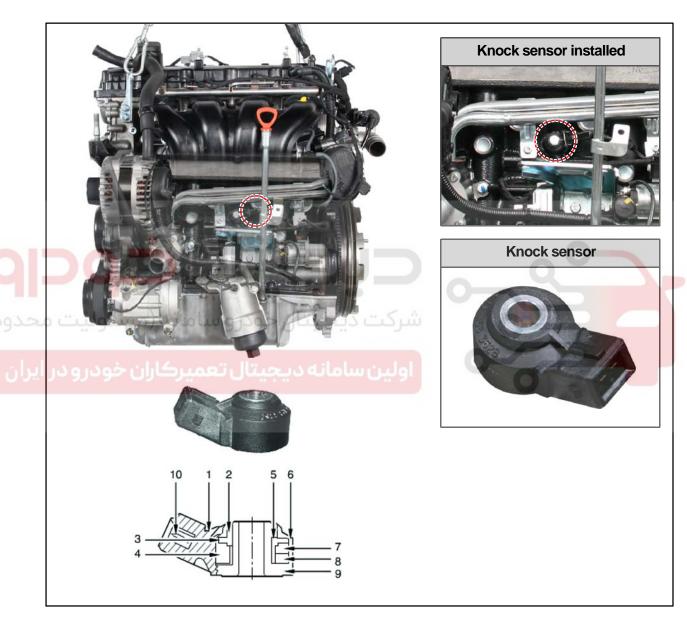
شرکت دیجیتال خودر و سامانه (مسئولیت محدود)

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

ENGINE CONTROL

KORANDO 2013.08

Modification basis
Application basis
Affected VIN


korando korando

1430-05 KNOCK SENSOR

1) Overview

The knock sensor is located on the cylinder block in intake manifold side.

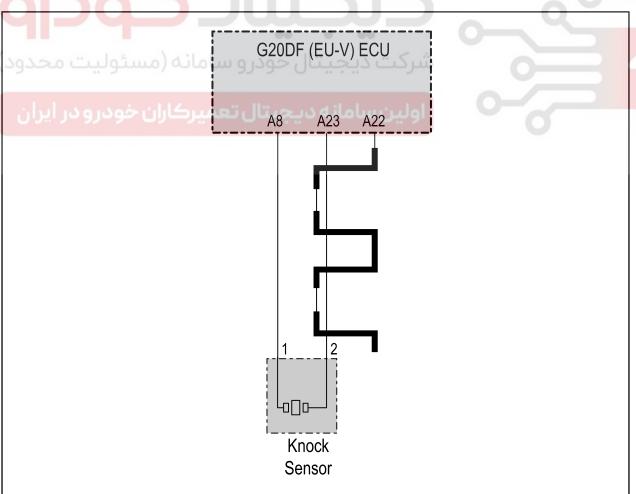
The knock sensor is to detect abnormal knocking in the engine. The knock sensor has Piezoelectric elements that generates a voltage when pressure or a vibration is applied to them.

- 1. Sensor housing
- 2. Nut
- 3. Dish spring
- 4. Weight
- 5. Isolated pipe
- 6. Upper contact plate

- 7. Piezoelectric element
- 8. Lower contact plate
- 9. Body
- 10.Terminal
- 11.Resistance

Modification basis	
Application basis	
Affected VIN	

1430-05


3) Features

Insulation resistance	>1 MΩ at 900 V
Resonance frequency	> 30 kHz
Operating temperature	-40 ~ 150℃
Output voltage	22 ~ 37 mV/g (3~10 kHz)
сифии голидо	22 ~ 57 mV/g (10~20 kHz)

- Control the idle stability
- Comes on the warning lamp when the injector is defective
- Determines the pilot injectiojn during MDP learning
- Adjusts the cylinder balancing
- When knock sensor is defective:

ECU determines the injection timimg according to MAP value (engine rpm, intake air mass, coolant temperature)

4) Circuit Diagram

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

15-75

GENER

SSEMBL SSEMBL

INTAKE SYSTEM

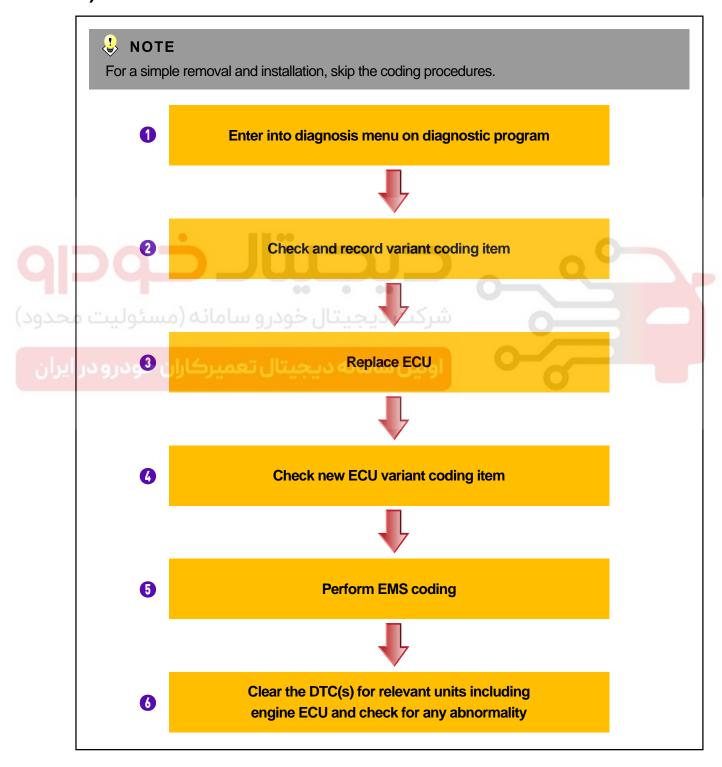
HAUST STEM SY

RCAT IGNIT

SYSTEM

STARTIN G

CRUISE


REMOVAL AND INSTALLATION

1490-01 ENGINE ECU

Preceding work

- Disconnect the negative cable from the battery.

1) Overview

Modification basis	
Application basis	
Affected VIN	

1490-01



1. Connect the diagnostic device to the diagnostic connector. Choose "Vehicle Type" and "Engine Type" on the main screen, then press the "Diagnosis" button.

شرکت دیجیتال خودرو سامانه (مسئولیت محدود

2. Read the variant coding and parameter coding in diagnosis menu, and record them.

ENGINE CONTROL

ENGINE (SSEMBL

INTAKE SYSTEM

NUST SY

IGNITION SYSTEM

LUBRCA

SYSTE

SYSTE

INO OIA

▶ Variant Coding

شرکت دیجیتال خودرو سامانه (مسئولیت محدود)



Modification basis
Application basis
Affected VIN

1490-01

4. Choose the item "Replace ECU" on the diagnosis menu.

ENGINE CONTROL

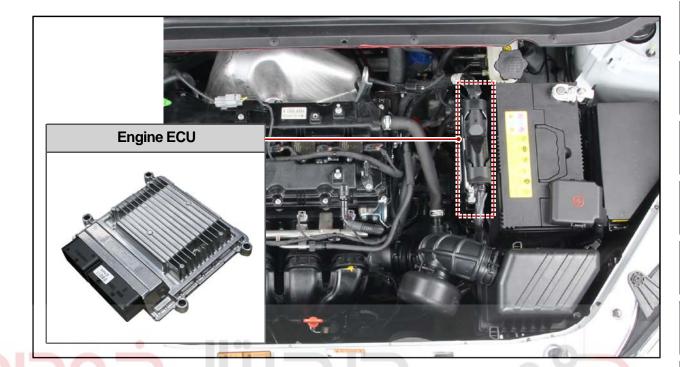
FOLUNDO

ENC EM ASSI

INTAK! SYSTE

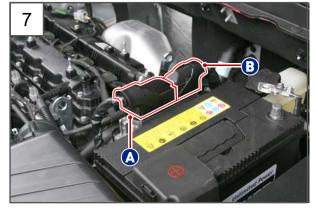
T FUE

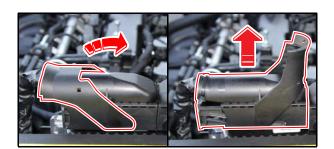
NITION E


LUBRCA ION

COOLING

ARTIN G SY


CKUSE



6. Release two clamps on engine ECU wiring harness.

7. Disconnect the ECU connectors (A, B).

15-80 1490-01

8. Unscrew two nuts (12 mm) from the engine ECU bracket.

Tightening torque 9.0 ∼ 10.0Nm

9. Remove the engine ECU assembly.

10.Unscrew four nuts (10 mm) on the engine

ECU.

Tightening torque 9.0 ∼ 10.0Nm

11. Separate the engine ECU from the bracket.

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

ENGINE

INTAKE SYSTEM

FUEL SYSTEM

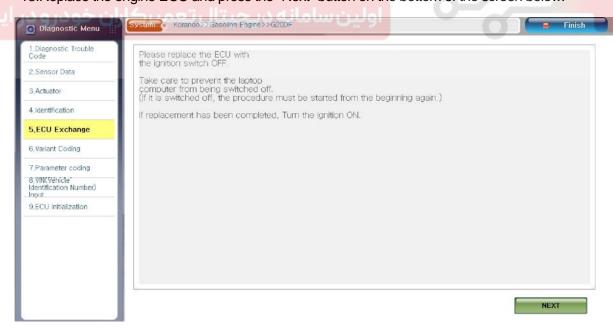
NITION EY

SOLING STEM

CHARGE SYSTEM

CKUISE

12.Install the engine ECU assembly in the reverse order of removal.


CAUTION

When replacing the engine ECU with a new one, backup the following data in advance with a diagnostic device.

- Data from older ECU
- Chassis number
- Variant coding data

حيجيتال خودرو

13. Replace the engine ECU and press the "Next" button on the bottom of the screen below.

1490-01

korando

14. Wait for a while as instructed on the screen.

شرکت دیجیتال خودرو سامانه (مسئولیت محدود)

♦ NOTE

If an error has been occurred during the replacement work, the following screen is displayed.

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

15-83

15.If the following screen is displayed, press the "OK" button.

سرخت دیجیتال خودرو سامانه (مستونیت مع

16. Turn the ignition switch to the "OFF" position, then press "Next" as instructed on the screen.

Modification basis
Application basis
Affected VIN

ENGINE ASSEMB

INTAKE SYSTEM

FUEL SYSTEM

SYSTEN

IGNITION SYSTEM

G LUBR(

COOLIN

CHARGE SYSTEM


SE STAR RO G

IGINE NTRO

1490-01

17. Wait for 15 seconds as instructed on the screen.

شرکت دیجیتال خودرو سامانه (مسئولیت محدود)

18. Turn the ignition switch to the "ON" position, then press "Next" as instructed on the screen.

ENGINE CONTROL

NGINE

ENGINE ASSEMBL

INTAKE SYSTEM

FUEL SYSTEM

> EXHAUST SYSTEM

IGNITION SYSTEM

NG LUBF

E COOL

CHARG SYSTEN

CKUISE

ENGINE CONTRO

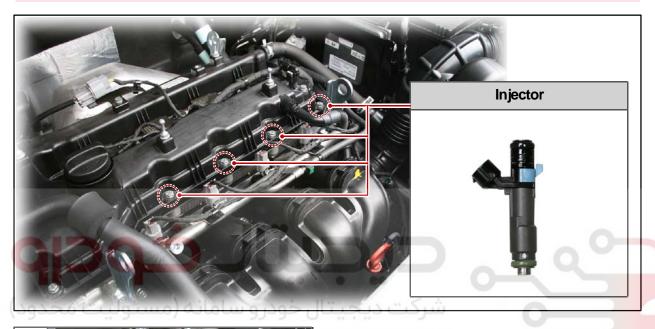
19.If the following screen is displayed, press the "Next" button and perform the immobilizer coding.

♣ NOTE

For REKES equipped vehicle, return to Main screen and go into BCM menu. (For Smart key system equipped vehicle, go into SKM menu.)

ولین سامانه دیجیتال تعمیرکاران خودرو در ایران

15-86 2245-02


FOLUNGO

2245-02 INJECTOR ASSEMBLY

Preceding work - Disconnect the negative cable from the battery.

A WARNING

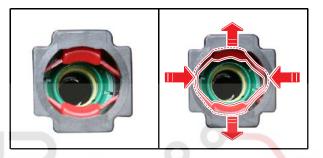
To prevent the personal injury and fire, the pressure in the fuel system should be released before diconnecting the fuel lines.

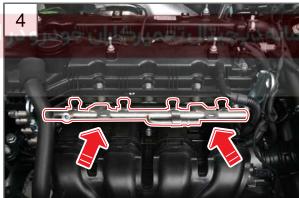
1. Disconnect four injector connectors.

2. Release two clamps and separate the injector wiring.

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	


hose to fuel rail assembly.


3. Release the quick connector on fuel supply

A CAUTION

Make sure not to spill out the fuel from the fuel pipes.

4. Unscrew two bolts (6 mm) from the fuel rail.

Tightening torque 25.0 ± 2.5Nm

Modification basis Application basis Affected VIN

ENGINE CONTROL KORANDO 2013.08

5. Separate the fuel rail assembly by pulling it evenly.

6. Remove the fuel rail assembly.

A CAUTION

Seal the injector mounting holes so that foreign material cannot get into the hole.

7. Remove the injector mounting retainer clip.

Insert the screwdriver into the groove (A) of injector mounting retainer.

Separate the injector mounting retainer by turning the screwdriver right and left.

Remove the injector mounting retainer.

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

FOLUNDO

2245-02

15-89

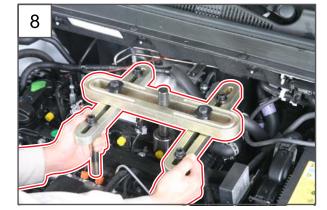
GENERA

ENGINE

INTAKE SYSTEM

> FUEL SYSTEM

ON EXHAI


UBRCAT ION

COOLING

CHARGE SYSTEM

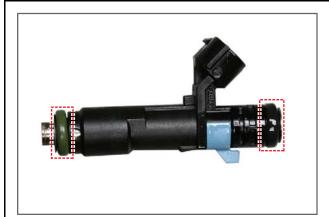
RUISE ST

ENGINE CONTRO

8. Remove the injectors from the fuel rail assembly.

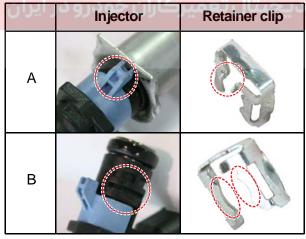
A CAUTION

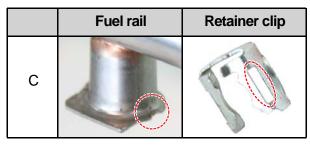
Replace the O-rings with new ones.


9. Install the injector assembly in the reverse order of removal.

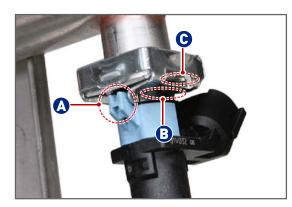
اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

Modification basis
Application basis
Affected VIN


Cautions when installing



- Replace the O-rings with new ones.



- Push the injector into fuel rail assembly while turning it right and left.

- Check the installed conditions of injector mounting retainer clip, injector and fuel rail assembly after installation.

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

SSEMBL

INTAKE SYSTEM

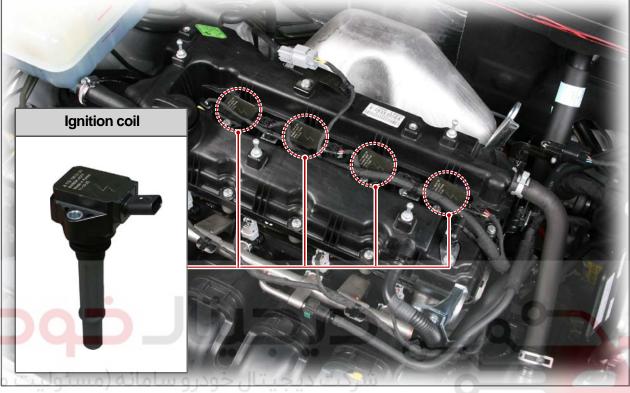
ST FUE

GNITION SYSTEM

LUBRCA ION

M SYST

TARTIN G


CRUISE

ENGINE CONTRO

1443-01 IGNITION COIL ASSEMBLY

Preceding work

vork - Disconnect the negative cable from the battery.

1. Disconnect the ignition coil connectors in order.

1. Unscrew the bolt from the No.1 ignition coil.

Tightening torque 7.8 ± 0.6Nm

3. Remove the No.1 ignition doil.

4. With the same manner, remove the remaining ignition coils.

5. Install the ignition coils in the reverse order of removal.

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

ENGINE \SSEMBL

INTAKE SYSTEM

FUEL SYSTEM

> EXHAUS SYSTEN

RCAT GN

SYSTEM

CRUISE CONTRO

ENGINE CONTR(

1443-03 SPARK PLUG

Preceding work

work - Disconnect the negative cable from the battery.

1. Remove the ignition coils in order.

₿ NOTE

Refer to Chapter "Ignition System".

1. Unscrew the No.1 ignition coil with the specified tool.

Tightening torque 15 ∼ 25Nm

3. Remove the No.1 spark plug.

₿ NOTE

With the same manner, remove the remaining spark plugs.

A CAUTION

Seal the injector mounting holes so that foreign material cannot get into the hole.

4. Install the spark plugs in the reverse order of removal.

ENGINE CONTROL

ENGINE GENERA

ENGINE

INTAKE SYSTEM

SYSTE

SYSTEM

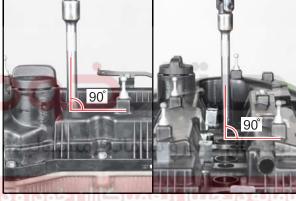
NG LUBRA

CHAKGE

RO GAR

Cautions when installing

 Screw in the spark plug with hands and specified tool before tightening it.


A CAUTION

If the thread is incorrectly engaged, the spark plug or thread could be damaged.

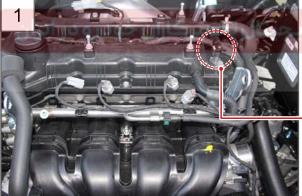
A CAUTION

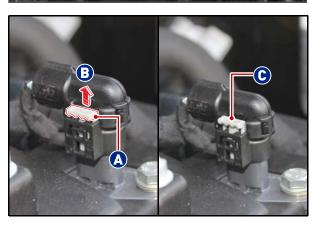
Do not apply excessive force to tighten it. Keep the specified tightening torque.

 The tool for spark plug should be perpendicular dueing service work.

- Measure the air gap before installation.

Air gap	1.1 mm
All yap	1.111111


15-96 1430-14


FOLUNGO

1430-14 CAMSHAFT POSITION SENSOR

Preceding work - Disconnect the negative cable from the battery.

1. Disconnect the camshaft position sensor connector.

To disconnect the camshaft position sensor connector, pull the lock (A) toward direction (B) and push the lock (C).

ENGINE CONTROL KORANDO 2013.08

Modification basis	
Application basis	
Affected VIN	

ENGIN GENER

ENGINE SSEMBL

INTAKE SYSTEM

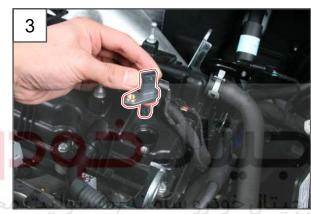
> FUEL SYSTEM

SYSTE

SRCAT IG

SYSTEM

CHARGE SYSTEM

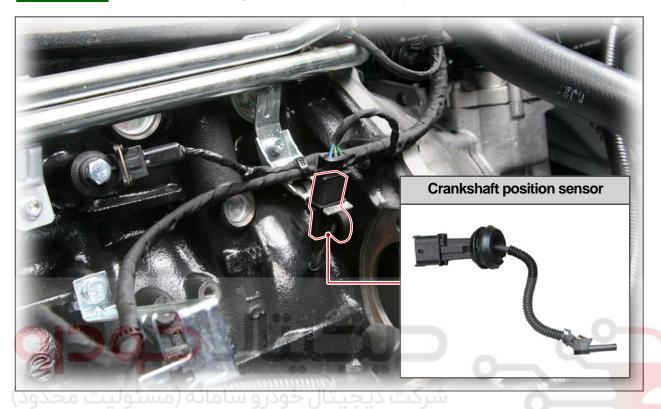

RUISE ONTRO

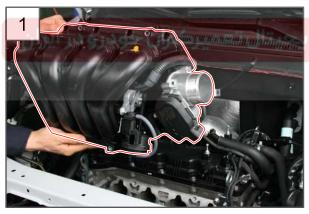
ENGINE

2. Unscrew mounting bolt (10 mm) from the camshaft position sensor.

Tightening torque 10.0 ∼ 14.0Nm

3. Remove the camshaft position sensor.




 Install the camshaft position sensor in the reverse order of removal. **15–98** 1128-37

FOLUNGO

1128-37 CRANKSHAFT POSITION SENSOR

Preceding work - Disconnect the negative cable from the battery.

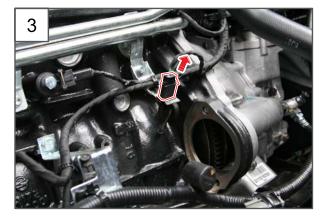
1. Remove the intake manifold assembly.

Refer to Chapter "Intake System".

2. Remove the start motor.

♣ NOTE

Refer to Chapter "Starting System".


ENGINE CONTROL

KORANDO	2013.08

Modification basis	
Application basis	
Affected VIN	

1128-37

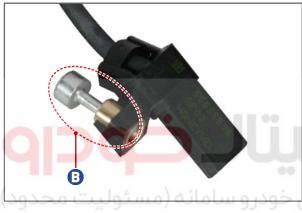
FOLUNGO

3. Disconnect the crankshaft position sensor connector.

4. Remove the crankshaft position sensor connector from the bracket.



To remove the connector, push both locks (A) on connector and pull it out toward arrow direction (B).


5. Remove the crankshaft position sensor dust cover.

021 62 99 92 92

6. Unscrew hexagon mounting bolt (6 mm) with L-wrench from the crankshaft position sensor.

Tightening torque 10.0 ± 1.0Nm

Crankshaft position sensor mounting bolt (B)

7. Remove the crankshaft position sensor.

8. Install the crankshaft position sensor in the reverse order of removal.

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

1311-26 OCV (Oil Control Valve)

Preceding work

- Disconnect the negative cable from the battery.

1. Disconnect the ignition coil connectors (#1).

2. Unscrew the bolt (10 mm) from the ignition

Tightening torque 7.8 ± 0.6Nm

3. Pull the ignition coil straight upward to remove it.

4. Disconnect the OCV connectors.

Pull up the lock (A) to direction (B).

Press the lock (C) to disconnect the connector.

FOLUNGO

1311-26 15-103

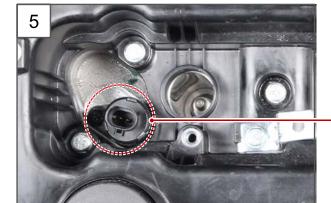
ENGINE

ENGINE

INTAKE SYSTEM

FUEL SYSTEM

N EXHAU


UBRCAT I

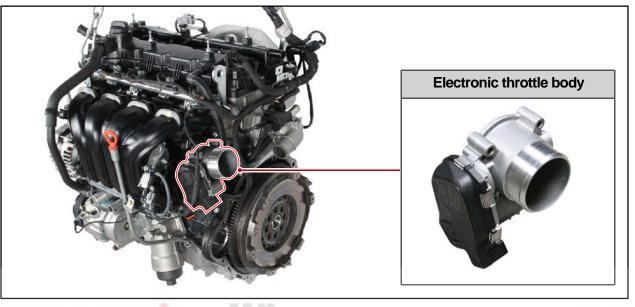
COOLING

NETAR O

CRUISE

ENGINE

6. Remove the OCV from cylinder head.


7. Install the OCV in the reverse order of removal.

FOLUNGO

1740-07 ELECTRONIC THROTTLE BODY


Preceding work - Disconnect the negative cable from the battery.

1. Disconnect the ignition coil connectors in order.

Tightening torque $6.0 \sim 7.0 \text{Nm}$

2. Release the clamp (A) for blow-by hose and the clamp (B) for electronic throttle body.

Tightening torque (B) 6.0 \sim 7.0 m

ENGINE CONTROL

FOLUNGO

1740-07 15-105

3. Remove the air cleaner hose assembly.

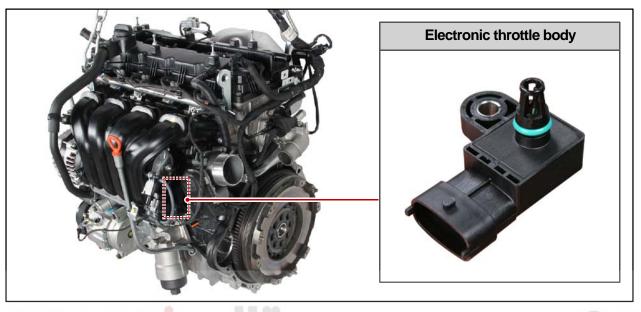
4. Disconnect the electronic throttle body connector.

5. Unscrew four bolts (10 mm) and remove the electronic throttle body.

6. Install the electronic throttle body in the reverse order of removal.

A CAUTION

Replace the O-ring with new one. Allpy the soapy water on the O-ring before installation.


Modification basis	
Application basis	
Affected VIN	

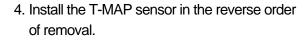
15-106 1740-03

FOLUNGO

1740-03 T-MAP SENSOR

Preceding work - Disconnect the negative cable from the battery.

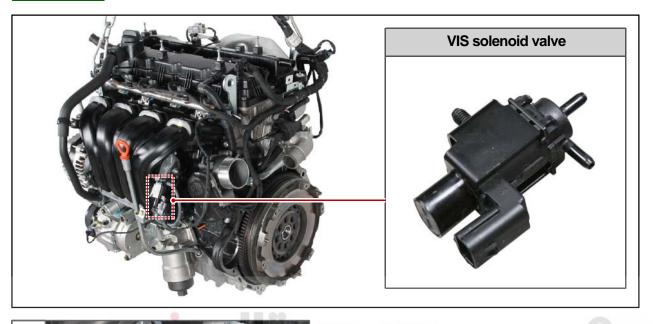
1. Disconnect the T-MAP sensor connectors.



2. Unscrew the T-MAP sensor mounting bolt (10 mm).

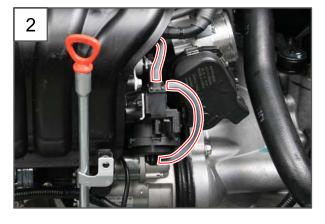
ENGINE CONTROL

3. Remove the T-MAP sensor.


ENGINE CONTROL KORANDO 2013.08

15-108 1628-04

FOLUNGO


1628-04 VIS SOLENOID VALVE

Preceding work - Disconnect the negative cable from the battery.

1. Disconnect the VIS solenoid valve connector.

2. Separate the VIS solenoid valve vacuum hose.

ENGINE CONTROL

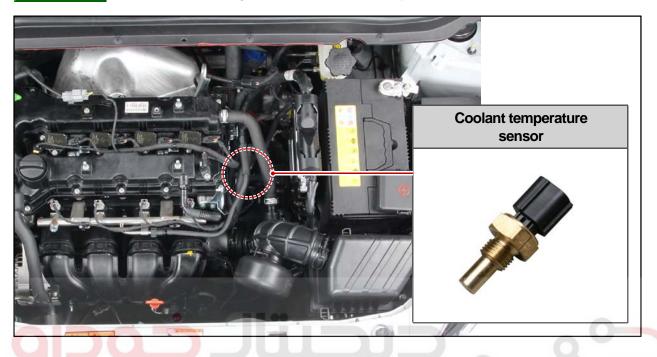
FOLUNGO

1628-04 15-109

3. Unscrew the bolt (10 mm) and remove the VIS solenoid valve.

Tightening torque 9.0 ∼ 10.0Nm

4. Install the VIS solenoid valve in the reverse order of removal.


Modification basis Application basis Affected VIN

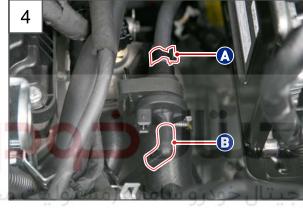
15-110 1430-07

FOLUNGO

1430-07 COOLANT TEMPERATURE SENSOR

Preceding work - Disconnect the negative cable from the battery.

- 1. Remove the drain plug at the bottom of the radiator to drain the coolant.
- **♣** NOTE Refer to Chapter "Cooling System".


- 2. Release the clamps and remove the blow-by hose.

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

3. Disconnect the purge control solenoid valve connector.

4. Separate the hose (A) to canister and the hose (B) to intake manifold.

5. Unscrew the bolt (10 mm) from the bracket and remove the purge control solenoid valve.

6. Disconnect the coolant temperature sensor connector and unscrew the coolant temperature sensor (22 mm).

Tightening torque 30,0Nm

7. Remove the coolant temperature sensor.

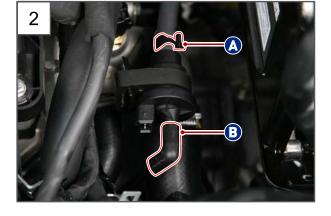
8. Install the coolant temperature sensor in the reverse order of removal.

A CAUTION

- Be careful not to damage the coolant temperature sensor.
- Check the sealing on the sensor and replace it with new one if necessary.

ENGINE CONTROL

PURGE CONTROL SOLENOID VALVE


Preceding work

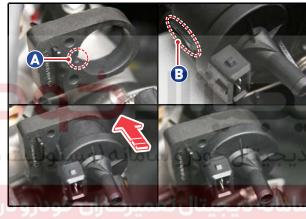
- Disconnect the negative cable from the battery.
- Remove the engine acoustic cover.

1. Disconnect the purge control solenoid valve connector.

2. Separate the hose (A) to canister and the hose (B) to intake manifold.

3. Pull out the purge control solenoid valve from the rubber mounting.

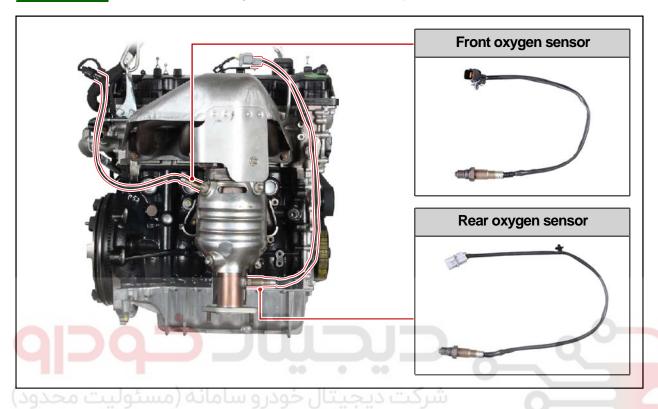
4. Remove the purge control solenoid valve.


5. Install the purge control solenoid valve in the reverse order of removal.

ENGINE CONTROL

Cautions when installing

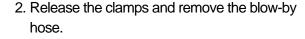
- Place the arrow mark on the valve facing the intake manifold.

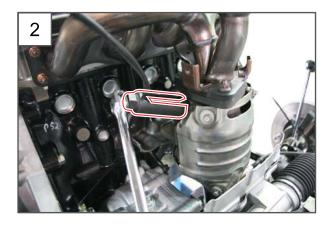


- Align the groove (A) in the rubber mounting with the arrow mark (B) on the valve.

FOLUNGO

1430-09 OXYGEN SENSOR


Preceding work - Disconnect the negative cable from the battery.



1. Remove the drain plug at the bottom of the radiator to drain the coolant.

Tightening torque 40 ∼ 60Nm

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

3. Remove the front oxygen sensor.

4. Install the front oxygen sensor in the reverse order of removal.

Be careful not to damage the oxygen sensor.

FOLUNGO

► Rear oxygen sensor

1. Disconnect the rear oxygen sensor connector and remove it from the connector holder with a remover.

2. Unscrew the rear oxygen sensor with a specified remover.

Tightening torque 40 ∼ 60Nm

3. Remove the rear oxygen sensor.

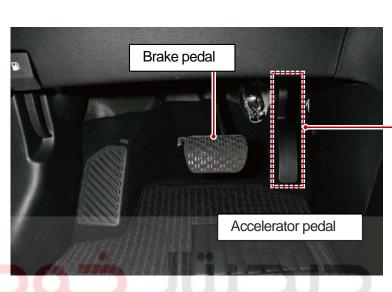
4. Install the raer oxygen sensor in the reverse order of removal.

A CAUTION

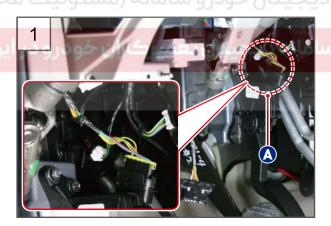
Be careful not to damage the oxygen sensor.

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

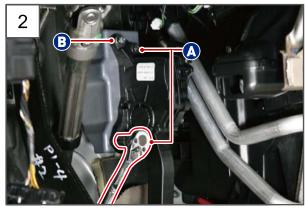

2010-01 15-119

Foravdo


2010-01 ACCELERATOR PEDAL POSITION SENSOR

Preceding work

- Disconnect the battery negative cable.
- Remove the acoustic cover.



1. Disconnect the accelerator pedal position sensor connector (A).

A CAUTION

Make sure that the cable is engaged with the protrusion of the cable socket when connecting the cable.

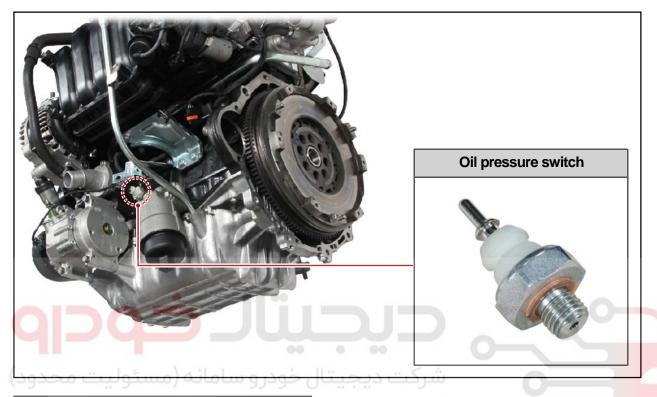
- Remove the accelerator pedal assembly.
 - Unscrew the bolts (A).
 - Unscrew the nut (B).

Tightening torque 10 ± 1.0Nm

3. Install the accelerator pedal position sensor in the reverse order of removal.

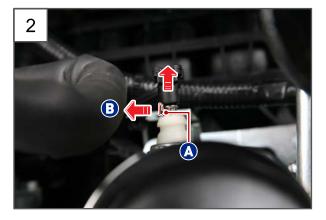
Modification basis	
Application basis	
Affected VIN	

ENGINE CONTROL
KORANDO 2013.08


15-120 1535-30

FOLUNGO

1535-30 OIL PRESSURE SENSOR


Preceding work

- Disconnect the negative cable from the battery.
- Remove the front under cover.

1. Lift up the vehicle with a lift and disconnect the oil pressure switch connector.

- Push the point (A) to direction (B) to disconnect it.

ENGINE CONTROL

Modification basis	
Application basis	
Affected VIN	

2. Unscrew the oil pressure switch with a spanner (27 mm).

Tightening torque Max.50Nm

3. Remove the oil pressure switch.

Make sure not to spill out the engine oil.

4. Install the oil pressure switch in the reverse order of removal.

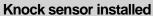
A CAUTION

Replace the copper washer with new one.

15-122 1430-05


FOLUNGO

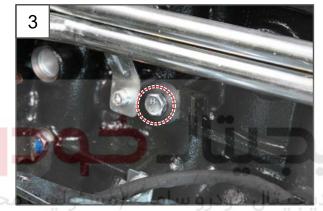
1430-05 KNOCK SENSOR


Preceding work

- Disconnect the negative cable from the battery.

1. Remove the intake manifold assembly.

♣ NOTE


Refer to Chapter "Intake System".

ENGINE CONTROL

Modificat	tion basis	
Applicat	ion basis	
Affected	I VIN	

2. Disconnect the knock sensor connector.

3. Unscrew the knock sensor mounting bolt (13 mm).

Tightening torque 20.0 ± 5.0Nm

The knock sensor connector should face 3 o'clock after installation.

4. Remove the knock sensor.

6. Install the knock sensor in the reverse order of removal.

Memo					
	• 110	00			
					Q
		00 0 00		$O \rightarrow \setminus$	
سئوليت محدود	درو سامانه (می	ديجيتال خو	شرکت	0-	
خودرو در ایران					
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,			